范文网

方程教案

发布时间:2023-12-23
1

式与方程教案八篇

式与方程教案

在教学工作者实际的教学活动中,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的式与方程教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

式与方程教案 篇1

一、教材分析

【复习内容】

教科书第12册92页“整理与反思”和92-93页“练习与实践”1~6。

【知识要点】

1.用字母表示数:(1)表示运算律;(2)表示计算公式;(3)表示一般数量关系。

2.方程与等式的关系:方程一定是等式,但等式不一定是方程。

3.方程、方程的解与解方程的区别:

方程:含有未知数的等式(是一个等式)。

方程的解:使方程左右两边相等的未知数的值(是一个值)。

解方程:求出方程中未知数的值的过程(是一个过程)。

4.等式的性质:

(1)等式的两边同时加上或减去同一个数,所得结果仍然是等式。

(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

5.列方程解决实际问题。

【教学目标】

1.使学生进一步理解用字母表示数的作用和等式的性质,体会用字母表示数的简洁性,渗透初步的代数思想。在比较中进一步加深对方程、方程的解及解方程的区别、方程与等式的关系的理解。

2.使学生进一步掌握“ax±b=c”、“ax×b=c”、“ax÷b=c”、“ax±bx=c”等形式的方程解法,培养学生自觉检验的良好习惯。

3.使学生进一步掌握列方程解决实际问题的基本思考方法,提高学生分析理解数量关系的能力,体会列方程解决实际问题的方便性。

二、教学建议

复习“式与方程”的知识要抓住四点进行:一是要组织学生讨论92页“整理与反思”中的3个问题。可采用先小组讨论、后全班交流的方式进行。讨论时要让学生结合一些具体的例子来说明。二是要加强一些相近知识的比较,如等式与方程的比较,方程、方程的解与解方程的比较等。三是要注意培养学生一些良好的学习习惯,如方程解好后自觉检验的习惯、列方程解决实际问题前先分析数量关系后解答的习惯。四是要重视学生分析理解数量关系的训练。注意:新教材里解方程一定要指导学生用等式的性质解。

三、知识链接

1.用字母表示数(教科书四下p106的例题、p108的例题、p110的例题)。

2.等式的性质与解方程(教科书五下p1-7例1—例6)。

3.列方程解决实际问题(教科书五下p8例7)。

四、教学过程

(一)用字母表示数

1.你能举出一些用字母表示数的例子吗?先小组交流,后全班交流。

2.教师指出:在具体情境中,用字母表示数总是有一定范围的。

3.用字母表示数有什么好处?

4.完成“练习与实践”第1题:学生独立完成后全班交流,说式子和数量关系。

(二)方程与等式

1.举例说说什么是方程?方程与等式有什么联系和区别?

2.填一填:在下面的集合圈里填入“等式”和“方程”。

3.举例说说什么是等式的性质?你怎样理解“同时”、“同一个数”、“0除外”这...

查看详情>>
2

一元一次方程教案

一元一次方程教案

一元一次方程教案 篇1

一、课题名称:3.3解一元一次方程(二)——去括号与去分母

二、教学目的和要求:

1、知识目标

(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2、能力目标

(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3、情感目标

(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

(2)培养学生严谨的思维品质;

(3)通过学生间的相互交流、沟通,培养他们的协作意识。

三、教学重难点:

重点:去分母解方程。

难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。

四、教学方法与手段:

运用引导发现法,引进竞争机制,调动课堂气氛

五、教学过程:

1、创设情境,提出问题

问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

2、探索新知

(1)情境解决

问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。

问题2:教室引导学生寻找相等关系,列方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000

↓去括号

6x+6x-12000=150000

↓移项

6x+6x=150000+12000

↓合并同类项

12x=162000

↓系数化为1

x=13500

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.

(学生自己进行解决)

归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)

去括号时要注意:

(1)不要漏乘括号内的任何一项;

(2)若括号前面是“—”号,记住去括号后括号内各项都变号。

(2)解一元一次方程——去括号

例题、解方程:3x—7(x—1)=3—2(x+3)。

解:去括号,得3x—7x+7=3—2x—6

移项,得3x—7x+2x=3—6—7

合并同类项,得—2x=—10

系数化为1,得x=5

3、变式训练,熟练技能

(1)解下列方程:

1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

2)3(2-3x)-3[...

查看详情>>
3

解方程设计教案十二篇

解方程设计教案

作为致力于为他人传道解惑的教育工作者,细致的教案准备是必不可少的。教案是教学活动的总体组织框架和操作指南。那么,如何编写一份合格的教案呢?接下来,我整理了一份五年级数学解方程的教案,供大家参考学习,希望对您的教学工作有所帮助。

解方程设计教案 篇1

学习内容:人教版五年级上册p57页

学习目标:

1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,进一步理解方程的解与解方程。

2、会根据等式不变的规律解形如x±a=b的方程,掌握解方程的格式和写法。

3、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。

4、在观察、猜想、验证等数学活动中,发展学生的数学素养。

教学重点:会解形如x±a=b的方程,并检验。

教学难点:理解形如x±a=b的方程原理,掌握正确的解方程格式及检验方法。

教学过程:

一、激趣复习感悟

(一)导入:秋天是一个瓜果飘香的季节,在这个季节里我们可以吃到各种各样的水果对不对?你知道吗?这些水果除了好吃以外还能做许多有趣的事想不想和老师一起去看看?

(二)观察理解,复习感悟

(1)课件出示天平,一个苹果等于几个草莓?。

你看到了什么?能用语言来描述吗?这个时候天平是怎么样的?能回答这个问题吗?要告诉大家你是怎么知道的?

能说一说为什么要减去两个草莓吗?

(2)课件出示第二个天平,原来一袋海棠果等于几个海棠果的重量。从这个天平的状态中你知道了什么?仔细观察你发现了什么,我们现在怎样做能一下子找到这个问题的答案。为什么要加上两个海棠果呢?

二、自主探究算理

(一)情境引入列出方程

老师这还有一个苹果,你能不能表示出它的重量呢?可以用一个字母x来表示。我用天平称了一下这个苹果结果有了一个新发现。你知道了什么信息?

谁能根据天平称得的重量来列一个方程。x+20=130

(二)合作交流得出方法

x是多少天平两边能相等呢?

看你的意见和其它同学的意见一样吗?一会要和大家说说你是怎么想的,是怎样算出来的?

预设:

(1)130-20=110利用加减法之间的关系

(2)(110)+20=130利用自己的计算经验

(3)利用天平平衡原理(等式的性质):由于数目简单有可能出现不了。

出现不了教师引导:还有没有其它方法。根据让天平两边平衡我们来想一种方法。

(三)小结方法板书课题

以上同学们说的方法都正确。我们这节课就来看看利用天平平衡原理来解方程的这种方法。(板书解方程)因为这种方法是我们今天刚遇到的而且它对我们今后的学习很有帮助,所以我们就来研究一下它。

(四)加深理解规范书写

谁能向大家再来介绍一下这种方法。在天平上我们会操作可是在怎么用算式把它记录下来呢。学生说教师引导学生进行正确书写。

这里大家都有明白吗?有问题吗?老师想问一下这里为什么要减20呢?而且两边都要减?所以在我们刚开始学习...

查看详情>>
4

简易方程五年级教案九篇

简易方程五年级教案

作为一名致力于引导他人学习和解惑的教育工作者,认真准备教案是十分必要的。教案是整个教学活动的指导方针和实施计划。那么,如何撰写一份高质量的教案呢?下面给大家整理了一份五年级数学解方程的教案,希望对大家提供一些启发和帮助。

简易方程五年级教案 篇1

教材内容:

人教版小学数学第十册《解简易方程》及练习二十六1~5题。

教材简析:

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

教学目标:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点:

理解方程的意义,掌握方程与等式之间的关系。

教具准备:

天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、创设情境,自主体验

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的.思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知

在教学解方程和方程的解的概念时,通过出示两道自学思考题

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,...

查看详情>>
5

解方程的教案9篇

解方程教案

教学过程中教案课件是基本部分,每天老师都需要写自己的教案课件。 合理的教案和课件是打造精品课的关键。依据您的要求编辑为您准备了一篇涉及“解方程的教案”的文章,仅供参考请您做好自我判断!

解方程的教案 篇1

解方程是数学中的一项基本技能,也是应用数学的重要工具之一。无论是在数学课堂上还是在实际生活中,我们经常需要解方程来解决问题。解方程的过程可以培养我们的逻辑思维能力和分析问题的能力,在数学教学中,解方程课件是一种很有用的辅助教学工具。


解方程课件应该包括方程的基本概念和基本性质的介绍。方程是数学上表示两个量相等的一种符号表达形式。它由等号连接的两个代数式组成,代数式中包含有未知数和已知数。方程的解即是能够使得等式成立的未知数的具体的取值。在这一部分,课件可以通过举例来解释方程的基本含义,让学生更直观地理解方程的概念。


解方程课件应该介绍方程的求解方法和步骤。通过列举不同类型的方程,如一元一次方程、一元二次方程等,课件可以详细说明每种方程的求解方法和步骤。比如,在解一元一次方程时,可以通过课件演示使用逆运算的方法来求解,比如加减反运算、乘除反运算等。而在解一元二次方程时,可以介绍使用配方法、因式分解法、根的性质等方法来解方程。在每种方法的讲解中,可以结合具体例题进行详细的步骤演示,让学生理解并掌握不同类型方程的解题思路。


解方程课件还可以包括一些常见的实际问题求解。在实际生活中,我们经常遇到需要解方程来解决问题的情况,比如通过解方程求取某个物体的速度、距离等。通过课件演示这些实际问题的解法,可以帮助学生将抽象的方程式与实际问题联系起来,更好地理解和应用解方程的方法。


解方程课件还可以设计一些交互式的小游戏或练习,以巩固学生的解方程能力。通过这些小游戏或练习,学生可以在课堂上进行互动,并通过反馈机制及时了解自己的解题情况,及时纠正错误,提高解方程的能力。


小编认为,解方程课件是一种非常实用和有效的数学教学工具。通过详细、具体、生动的讲解和演示,解方程课件可以帮助学生更好地理解和掌握解方程的思路和方法,提高解方程的能力。通过与实际问题的结合和交互式的练习,解方程课件还可以提高学生的应用能力和解题能力。在数学教学中,解方程课件应该得到更广泛的应用。

解方程的教案 篇2

《解方程》中的典型错例分析

最近一段时间我们认识了方程,学习理解了等式的性质,能根据等式的性质解简易方程。

【现象】

在教学完学生利用等式性质解简易方程后,发现学生出现的问题有一、格式上的:1.会忘写“解”字;

2.上下等号没有对齐;

二、典型错误:1.未知数在减数位置的时候,如18-2x=16;

解:18-2x+18=16+18

2x=34

2x÷2=34÷2

x=17

2.未知数在除数位置的时候,如28÷x=7。

解:28÷x×28=7×28

x=216

【分析】

格式书写问题原因:解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足...





查看详情>>
6

分式方程教案

分式方程教案

经过仔细挑选好工具范文网小编认为“分式方程教案”是最具价值的文章。在老师日常工作中,教案课件也是其中一种,老师在写教案课件的时候不能敷衍了事。教案是提高师生互动质量的有效途径。为了不遗漏重要信息建议您将本页收藏!

分式方程教案 篇1

分式方程

八一中学 范文浩

教学目标

1、经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;

2、经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识。

3、在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。 教学重点:分式方程的解法。

教学难点:理解增根的概念,理解解分式方程要验根。 教学过程:

一、复习旧知

1、找错误,解方程:

2x?110x?12x?1???1364

解:去分母,得:

4(2x-1)-2(10x+1)=3(2x+1)-1 去括号,得:

8x-4-20x+1=6x+3-2 移项,得:

8x-20x-6x=3-2-4+1 合并同类项,得: -18x=-2 把系数化为1,得:

x??19

2、甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用的时间与乙做6个所用时间相等.求甲、乙每小时各做多少个? 解:设甲每小时做x个,则乙每小时做(x-2)个,

根据题意,

师:这是什么方程?如何求解呢?激发学生的求知欲

二、引入课题

1、了解分式方程的概念

2、解上题方程:两边同时乘以最简公分母x(x-2) 整理,得10x-20=6x,∴x=5 把x=5代入上述分式方程检验:左边=2 右边=2 左边=右边 ∴ x=5是所列方程的根.

答:甲每小时做5个,乙每小时做3个。

三.例题教学

1、解分式方程:

分析:最简公分母为(x-3),去分母化为整式方程解,最后验根。 解:去分母,方程两边同时乘以(x-3),得1+2(x-3)=4-x,

解这个方程,得3x=9, ∴x=3。

检验:当x=3代入原方程左边与右边都无意义.(设疑:这意味着什么?解出的x=3叫做原方程的什么?解分式方程一定需要什么?激发学生求知欲。引出增根的概念和解分式方程必须检验。)

∴x=3是原方程的增根,∴原方程无实数根。 四.议一议:

1、分式方程产生增根的原因。

去分母时我们在方程的两边同乘了一个可能使分母为零的整式。增根是所得整式方程的根,但不是原分式方程的根。

2、解分式方程一般需要经过哪几个步骤?

(1)去分母:将分式方程的分母因式分解,找出最简公分母,方程两边同乘以各分母的最简公分母,将分式方程转化为整式方程。

(2)解整式方程.

(3)检 验: 为了检验方便,可把整式方程的根分别代入最简公分母,如果使最简公分母为0,则这个根叫分式方程的增根,必须舍去.如果使最简公分母不为0,则这个根是原分式方程的根。注意:增根是所得整式方程的根,但不是原分式方程的根。

(4)写出方程的解。

五、.随堂练习...

查看详情>>
7

一元二次方程的解教案范文五篇

一元二次方程教案

编辑为您特别精选的“一元二次方程的解教案”一定不会让您失望,希望这些策略对您的问题有所启示和借鉴。教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。设计教案需要注重信任和尊重学生的个性和需求。

一元二次方程的解教案【篇1】

1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )

3、若α、β是方程x2+2x-=0的两个实数根,则α2+3α+β的值为( )

4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )

5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )

6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )

7、某城底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )

8、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )

一元二次方程的解教案【篇2】

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

问题(2)如图,如果 ,那么点c叫做线段ab的黄金分割点.

如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.

问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或...

查看详情>>
8

最新一元二次方程教案十二篇

一元二次方程教案

编辑为您提供了关于“一元二次方程教案”的最新范文,以下资源仅供参考,请大家仔细查阅。在教学过程中,教案课件是一项基本工作,每位老师都需要编写自己的教案课件。教案的编写是提高课堂教学效率和优化教学方法的必要条件。

一元二次方程教案(篇1)

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

(二)重点、难点

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

(三)教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

一元二次方程教案(篇2)

1、教材所处的地位和作用:本课是阅读教材p39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。

2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+       )2 =     2                          的观察,分析,讨论,发现,最后得出结论:只有当                                                     2

b2-4ac≥ 0    时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。

3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容...

查看详情>>
9

解二元一次方程组的教案

二元一次方程组教案
二元方程组教案
方程组教案

现在给您提供的是好工具范文网整理的“解二元一次方程组的教案”。教师会将课本中的主要教学内容整理到教案课件中,因此编写教案需要慎重对待。教案是评估教师教学的重要依据。以下内容仅供参考,欢迎大家阅读!

解二元一次方程组的教案【篇1】

会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为已知”的化归思想。

运用代入消元法解二元一次方程;了解解二元一次方程时的“消元”思想,初步体会“化未知为已知”的化归思想。

在学生了解解二元一次方程时的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。感受学习数学的乐趣,提高学习数学的热情;培养学生合作交流,自主探究的好习惯。

会用代入消元法解二元一次方程组;理解解二元一次方程时的“消元”思想、“化未知为已知”的化归思想。

“消元”的思想;“化未知为已知”的化归思想。

上次课我们学习了二元一次方程、二元一次方程组,以及二元一次方程、二元一次方程组的解的定义。下面请同学们回忆一下它们分别是怎样定义的?(同学们说,说不完的教师利用ppt进行展示)

我们知道:适合一个二元一次方程组的一组未知数的值叫做这个二元一次方程组的解。那么,我们能不能求出它的解呢?要怎样求呢?

(1)来看我们课本上的例子:

上次课我们 设老牛驮了x包,小马驮了y包,并建立如下的方程组。

...........(1)?x?y?1.......... ?x?1?2(y?1)............(2)?

现在要求老牛和小马到底各驮几个包裹?就需要我们求出该方程组的解对吧?我们前面已经学习了怎样求解一元一次方程,下面请同学们讨论怎样通过已学的知识解这个方程组?(学生讨论,教师巡视指导)

通过同学们的讨论我们已经有了解题思想。首先,由方程(1)将x视为已知数解出y=x-2,由于方程组中相同的字母表示同一未知数,所以可以用x-2代替方程(2)中的y,即将y=x-2代入方程(2)。这样就可以把方程化为我们所熟悉的一元一次方程,进而求解这个一元一次方程得到y的值,带回方程组求出x的'值,方程组的解就求出来了。

...........(1)?x?y?1.......... ?...(2)?x?1?2(y?1).........

因此,就求出了老牛驮了7个包裹,小马驮了5个包裹。

来看我们的解题过程,首先将其中一个方程中的一个未知数用含有另一个未知数的代数式表示出来,再把得到的代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程进行形求解。这种求解二元一次方程组的方法称为代入消元法。

(2)下面再来看一个例子:

(1)?2x?3y?16.......... ?..(2)?x?4y?13......

....

?x?5所以原方程的解为? y?2?

下面请同学们自己解下列方程组:

(1)?1)1)?x?y?11....(?3x?2y?9....( (...

查看详情>>
10

方程的意义的教案

方程意义教案
方程教案

为了帮助学生更好地掌握课堂内容,老师需要事先准备好教案。在编写教案和制作课件时,老师还需要投入一些心思。教案是教师日常工作中不可或缺的一部分。我们已经准备好了您所需要的“方程的意义的教案”,希望今天的分享能够给您带来启发!

方程的意义的教案(篇1)

一,教学内容

"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义

二,教材分析

方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.

三,教学目标

根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:

1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.

2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.

3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.

四,教学重点,难点

教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.

教学难点:正确寻找等量关系列方程.

五,教学设想

概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.

六,教学准备:课件,天平,实物若干等

七,教学过程:

课前准备:利用学具(简易天平)感受天平平衡的原理.

教学过程

学生活动

设计意图

一,创设情景,建立表象

1.认识天平.

2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么

(天平两边所放物体质量相等)

3.用式子表示所观察到的情景:

情景一:导入等式

(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝

300+150=450

(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶

250+250+250+250=1000

或250×4=1000

情景二:从不平衡到平衡引出不等式与含有未知数的等式

(1)

在杯子里面加入一些水,天平会有什么变化

要使天平平衡,可以怎么做

情景三:看图列等式

(1)

x+y=250

(2)

536+a=600

直观认识天平

回忆课前操作实况理解平衡原理

观察情景图,先用语言描述天平所处的状态,再...

查看详情>>