范文网
好工具> 范文 >实用文 >

一元二次方程的解教案范文五篇

一元二次方程教案

格式:DOC上传日期:2024-02-23

一元二次方程的解教案范文五篇

2024-02-23 09:27:03

【#实用文# #一元二次方程的解教案范文五篇#】编辑为您特别精选的“一元二次方程的解教案”一定不会让您失望,希望这些策略对您的问题有所启示和借鉴。教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。设计教案需要注重信任和尊重学生的个性和需求。

一元二次方程的解教案【篇1】

1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )

2、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )

3、若α、β是方程x2+2x-=0的两个实数根,则α2+3α+β的值为( )

4、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )

5、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )

6、已知关于x的方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )

7、某城底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )

8、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )

一元二次方程的解教案【篇2】

了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

问题(1)《九章算术》勾股章有一题:今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.

问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的.最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.

不论m取何值,该方程都是一元二次方程.

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

一元二次方程的解教案【篇3】

教学目标

知识与能力:

1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.同学们掌握一元二次方程的实际应用。了解一元二次方程的分式方程。

过程与方法:

培养学生的逻辑思维能力以及推理论证能力。

情感与价值观:渗透分类的数学思想和数学的简洁美;培养学生的协作精神。

重、难点

重点:根的判别式和根与系数的关系及一元二次方程的应用。

难点:一元二次方程的实际应用。

一、导入新课、揭示目标

1.理解一元二次方程根的判别式。

2.掌握一元二次方程的根与系数的关系

3.掌握一元二次方程的实际应用。

二、自学提纲:

一。主要让学生能理解一元二次方程根的判别式:

1.判别式在什么情况下有两个不同的实数根?

2.判别式在什么情况下有两个相同的实数根?

3.判别式在什么情况下无实数根?

二。ax2+bx+c=o(a≠0)的两个根为x1.x2那么

X1+x2=-x1x2=

三。一元二次方程的实际应用。根据不同的类型的问题。列出不同类型的方程。

三。合作探究。解决疑难

例1已知关于x的方程x2+2x=k-1没有实数根。试判别关于x的方程x2+kx=1-k的根的情况。

巩固提高:

已知在等腰中,BC=8.AB.AC的长是关于x的方程x2-10x+m=0的两个实数根。求的周长

例题2:

.已知:x1.x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根。且(x1+2)(x2+2)=11.求a的值。

.巩固提高:

已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.

(1)求证:不论m为任何实数。方程总有两个不相等的实数根;

(2)若方程两根为x1.x2.且满足

求m的值。

例3某电脑销售商试销一品牌电脑(出厂为3000元/台),以4000元/台销售时,平均每月销售100台。现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元。已知电脑价格每台下降100元,月销售量将上升10台,

(1)求1月份到3月份销售额的平均增长率:

(2)求3月份时该电脑的销售价格。

练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。为了扩大销售,增加利润,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

1)若商场平均每天要赢利1200元,则每件衬衫应降价多少元?

2)则降价多少元?

四、小结

这节课同学有什么收获?同学互相交流?

五、布置作业:

课前课后P10-12

一元二次方程的解教案【篇4】

在解一元二次方程时,常常需要用到分解因式,但是教材中一般只介绍了提公因式法、平方差公式法和完全平方公式法.

本期我们将介绍一种在因式分解中起着重要作用的方法:十字相乘法.

先来看一个等式:

(x+a)(x+b)=x²+(a+b)x+ab.

把这个等式反过来写就是:

x²+(a+b)x+ab=(x+a)(x+b).

此时我们可以发现,如果一个式子可以化成x²+(a+b)x+ab的形式,它就可以通过因式分解得到(x+a)(x+b).

而x²+(a+b)x+ab的特点是:二次项x²的系数是1,一次项的系数与常数项有联系,一个是a+b,一个是ab.

现在我们来看两个例题:

分析:因为x的系数是1,所以我们要找两个相加等与1的数,而且这两个数乘积是-6. 于是我们找到了-2和3.

=(x+3)(x-2)=0.

分析:因为x的系数是5,我们就要找两个相加等与5的数,而且这两个数乘积是6. 于是我们找到了2和3.

x²+5x-6=0;

x²+7x+12=0;

x²+3x-10=0;

x²-5x+6=0;

x²-4x+3=0.

有的读者会问为什么叫十字相乘法,这与用这种方法解题的方式有关. 这要从这种方法的更一般的形式说起.

=acx²+(ad+bc)x+bd.

这个等式反过来写就是:

=(ax+b)(cx+d).

我们如果把二次项acx²的系数ac和常数项bd按下图的方式写在一个正方形的四个顶点处,那么,让同一条对角线上的两个数相乘之后,我们就得到两个乘积:ad和bc.

让这两个乘积相加,则有ad+bc,这正好是一次项(ad+bc)x的系数.

而在同一行,横着的两个数,让左边的数乘上x再加右边的数,就得到:ax+b和cx+d两个式子,这正是因式分解后得到的结果(ax+b)(cx+d)中的两个因式.

而上图中出现的那个“×”,像个斜放着的“十”字,所以我们称这种方法为:十字相乘法.

这个方法的应用如下:

分析:分别把6和-28进行分解,然后作十字相乘,找可以得到-2的结果.如图:

这里,6分解成2×3,-28分解成4×(-7),作十字相乘,得到两个乘积:-14和12,让两个积相加,就得到一次项的系数-2. 每一行,横着的两个数,左边的数乘x再加上右边的数,得到:2x+4和3x-7.

5x²-25x+20=0.

一元二次方程的解教案【篇5】

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

全文阅读已结束,如果需要下载本文请点击

下载此文档
  • w
    一元二次方程的解教案范文五篇

    发布时间:2024-02-23

    编辑为您特别精选的“一元二次方程的解教案”一定不会让您失望,希望这些策略对您的问题有所启示和借鉴。教案是老师上课之前需要备好的课件,每个老师都需要仔细规划教案课件。设计教案需要注重信任和尊重学生的个性和需求。...

  • w
    一元二次方程教案通用十四篇

    发布时间:2023-10-29

    教材教案是教师在上课前需要准备好的教学材料。每位教师都需要认真规划教案课件。一份详细的教案对于教师的教学活动具有非常重要的价值。那么,如何写出令自己满意的教案课件呢?根据您的要求,我们编辑了“一元二次方程教案”。我相信这些建议能够成为您决策的一个参考点!...

  • w
    最新一元二次方程教案十二篇

    发布时间:2024-01-28

    编辑为您提供了关于“一元二次方程教案”的最新范文,以下资源仅供参考,请大家仔细查阅。在教学过程中,教案课件是一项基本工作,每位老师都需要编写自己的教案课件。教案的编写是提高课堂教学效率和优化教学方法的必要条件。...

  • w
    一元二次方程课件(必备八篇)

    发布时间:2023-10-29

    课程计划是教师在授课前需要准备好的内容,每位教师都需要认真准备课程计划。采用创新的教学课程制作有助于激发学生的探索欲望。希望这篇"一元二次方程课件"能够满足您的阅读需求,并且让您感到满意。当您拥有美容秘诀时,请不要忘记与朋友们分享!...

  • w
    2024一元二次方程课件(汇集12篇)

    发布时间:2024-04-08

    一元二次方程课件 篇1  第1教时  教学内容: 12.1 用公式解一元二次方程(一)  教学目标:  知识与技能目标:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.  过程与方法目标: 1.通过一元二次方程的引入,培养学生分析问...

  • w
    2024一元二次方程课件(汇集6篇)

    发布时间:2024-04-08

    一元二次方程课件 篇1  一、教学目标  1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。  2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。  3、情感态度与价值观:学生在独立思考的过程中,能将生活中...

  • w
    解二元一次方程组的教案

    发布时间:2023-12-26

    现在给您提供的是好工具范文网整理的“解二元一次方程组的教案”。教师会将课本中的主要教学内容整理到教案课件中,因此编写教案需要慎重对待。教案是评估教师教学的重要依据。以下内容仅供参考,欢迎大家阅读!...

  • w
    二元一次方程课件

    发布时间:2024-03-28

    【教学目标】知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。情感态度与价值观...

最新文章

复制全文
下载文档