范文网

等差数列教案

发布时间:2024-10-06
1

等差数列教案

等差数列教案

作为一名人民教师,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?下面是小编整理的数学等差数列教案,仅供参考,大家一起来看看吧。

等差数列教案 篇1

一、知识与技能

1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.

二、过程与方法

1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.

三、情感态度与价值观

通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.

教学过程

导入新课

师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本p41页的4个例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,15.5,13,10.5,8,5.5…;

(4)10 072,10 144,10 216,10 288,10 366,….

请你们来写出上述四个数列的第7项.

生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.

师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.

生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.

师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.

生:1每相邻两项的差相等,都等于同一个常数.

师:作差是否有顺序,谁与谁相减?

生:1作差的顺序是后项减前项,不能颠倒.

师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.

这就是我们这节课要研究的内容.

推进新课

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).

(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈n*,则此数列是等差数列,d叫做公差.

师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的'能力)

生:从“第二项起”和“同一...

查看详情>>