搜索更多内容
等比数列教案
所以sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qsn =a1*q^1+a1q^2+...+a1*q^n (2)
(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的.第n项不变,这叫错位相减,其目的就是消去这此公共项。
即sn =a1(1-q^n)/(1-q)。
①若 m、n、p、q∈n*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成zhi等比数列.
“g是a、b的等比中项”dao“g^2=ab(g≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和sn=a1(1-q^n)/(1-q)=a1(q^n-1)/(q-1)=(a1q^n)/(q-1)-a1/(q-1)
在等比数列中,首项a1与公比q都不为零.
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列
一、教材分析
1.从在教材中的地位与作用来看
《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
2.从学生认知角度来看
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3. 学情分析
教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
4. 重点、难点
教学重点:公式的推导、公式的特点和公式的运用.
教学难点:公式的推导方法和公式的灵活运用.
公...
查看详情>>