【#实用文# #反比例课件#】作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的正比例和反比例的比较教案,欢迎阅读,希望大家能够喜欢。
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的'一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
【教材理解】
《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。
【设计理念】
在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。
【学情简介】
这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。
【教学目标】
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
【教学重难点】
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
【教学方法】小组合作,归纳推理,探究交流
【教学准备】多媒体课件
【课时安排】1课时
【教学过程】
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米) 30 20 15 10 5
底面积(平方厘米) 10 15 20 30 60
体积(立方厘米)
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识
总结:今天我们学习了什么?(揭示课题—反比例)你有什么收获?学习中,你要提示大家注意什么?你对今天的学习还有什么疑问吗?
【板书设计】 反比例
高度(厘米) 30 20 15 10 5
底面积(平方厘米) 10 15 20 30 60
体积(立方厘米) 300 300 300 300 300
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
高×底面积=水的体积(一定)
反比例关系式:x×y=k(一定)
一、教材分析:
本节课学习的主要内容是画反比例函数的图象,让学生经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征。反比例函数的图象是在学生已经知道了研究函数图象的一般方法,以及一次函数的图象是一条直线的基础之上进一步去研究的。同时,反比例函数的图象也与众不同。针对教材及学生的实际情况,本节课的设计是让学生多动手去探索规律。
二、教学目标:
知识与技能:
(1)作反比例函数的图象。
(2)掌握反比例函数的图象与性质。
过程与方法:
逐步提高从函数图象中获取信息的能力,和数形结合的能力。
情感、态度与价值观:
培养学生积极参与,乐于探究,善于交流的意识和习惯。
三、教学重难点
教学重点:学习反比例函数图象的画法,概括反比例函数图象的共同特征。
教学难点:从反比例函数的图象中归纳总结反比例函数的主要性质。
四、教学过程:
(一)创设情境、提出问题
我们已经知道一次函数的图象是一条直线,那么反比例函数(k为常数,k≠0)的图象是什么呢?猜猜看,应该怎么画呢?(让学生根据已有的知识经验,回忆画函数图象的一般方法与步骤,类比一次函数的图象进行猜想)
(二)动手实践、解决问题
1、画图:画出反比例函数的图象在教师的引导下,让学生通过亲自动脑、动手实践去科学地验证自己的猜想,培养学生科学的态度与精神。
师:画函数图象的第一个步骤是什么?
生:列表。
师:(大屏幕投影:表格)根据前面学习一次函数的经验,列表时应注意什么?
生:应注意自变量x的取值范围,本题当中x≠0。
师:是不是把所有的x不等于零的值全都列举出来?
生:不是。
师:那怎么取值呢?(学生讨论)
生:为了便于计算和描点,我们通常取x>0和x<0的一些整数值。
师:(大屏幕投影)那么,对应的y值分别是多少呢?(学生填表、口答答案。)
目的:让学生回忆、类比,注意比较与画一次函数的图象时列表的相同点与不同点。
师:列表之后,我们得到了几组x、y的对应值,即几组有序实数对,如何用直角坐标系中的点把它们表示出来呢?也就是如何描点?
生:以表中x的值作为点的横坐标,y的值作为点的纵坐标依次描点。
①学生描点
②教师利用多媒体课件演示描点的动画过程。
友情提醒:描点可要细心哦!
目的:让学生独立描点,观察描出的点的位置。培养学生细心的良好品质。
师:如何把描出的点连接起来,从而画出它的图象呢?
①学生连接。
②教师利用实物投影仪展示学生成果。
师:这里有同学们画的一些反比例函数的图象,我从中选出了四幅图象,请同学们仔细观察并进行讨论这四幅图象画得对还是不对?如果不对,它们分别错在哪里?为什么?(学生分析讨论)
生:第一幅图象是对的;第二、三、四幅图象都是错误的,错误的原因是:没有注意到自变量x的取值范围是x≠0的全体实数师:一位同学有这样一种想法:“在相邻的两点之间用线段来连接。”这种想法对吗?如果不对,错在哪里?为什么?学生分组讨论。学生相互讨论生:除了线段两个端点的坐标满足函数解析式之外,线段上其余各点的坐标都不满足函数解析式。所以用线段连接的方法是错误的。
师:除了已描好的点之外,你还能不能找到其它坐标满足函数解析式的点,比如横坐标在大于1小于2之间?
师:那么,应当用什么样的线来连接呢?
生:应当用平滑的曲线顺次连接。
目的:师生互动、生生互动,让学生充分参与、经历画图的过程,体会知识的形成过程;通过对学生画图个案的评析、多媒体课件填充点的过程演示、以及学生的认真观察、思考,探索得出重要的结论:应当用平滑的曲线顺次连接。学生自发的为自己发现的结论鼓掌,让学生品尝到成功的喜悦,增强学生的自信心。教师利用多媒体课件演示连接的过程:用平滑的曲线先顺次连接第一象限内的各点,得到图象的一个分支;然后再顺次连接第三象限内的各点,得到图象的另一个分支。把两个分支组合在一起就得到了反比例函数的图象。
2、猜想:反比例函数的图象在什么象限?请你在下面的平面直角坐标系内画出它的图象。
师:刚才,我们画出了k=6时,反比例函数的图象。请同学们猜想一下,k=-6时,反比例函数的图象在什么象限?为什么?
生:图象分布在二、四象限。由k=-6得xy=-6所以x、y异号所以反比例函数的图象分布在二、四象限。
3、师:请同学们画图验证自己的猜想。
4、①学生画图验证
②相互交流成果检验自己的猜想是否正确。
目的:让学生先类比k=6时,反比例函数的图象的位置,猜想k=-6时,反比例函数的图象的位置;然后,再独立画图验证自己的猜想。培养学生类比、猜想、说理、独立画图验证的能力。
师:(大屏幕投影:显示画图象的全过程)请同学们观察反比例函数的图象,注意比较与一次函数图象有哪些不同?讨论反比例函数的图象具有那些特征(学生分组讨论)
生:①一次函数的图象是一条直线,反比例函数的图象是由两个分支组成的,而且都是曲线;
②一次函数的图象与x、y轴有交点,反比例函数的图象与x、y轴没有交点;
③反比例函数的图象的两个分支关于原点成中心对称。
④反比例函数的图象的两个分支被坐标轴隔开,它们可以无限地靠近x、y轴,但是永远不能与x、y轴有交点;
师:反比例函数的图象有许多的特征,在今后的学习当中,我们会逐步地去认识它。
设计目的:通过观察图象并比较与一次函数图象的不同点,让学生初步认识具体的反比例函数图象的特征。)
五、本节课你学到了什么?有哪些收获?
生:①画反比例函数的图象的方法
②知道了反比例函数的图象是双曲线
③反比例函数的图象不与坐标轴有交点
④反比例函数的图象是中心对称图形
第一课时
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的'表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
教材分析
本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。
教学目标
1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;
2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;
3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。
教学重点
掌握反比例的意义。
教学难点
有条理地思考、判断成反比例的量。
教学准备
多媒体课件
教学过程
一、联系生活,导入新课
1、同学们,前两节课我们认识了正比例,怎样的`两种量成正比例呢?
(结合回答板书:相关联、比值一定、y/x=k<一定>)
2、判断下表中的两种量是否成正比例,为什么?
表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。
表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。
表3:不成正比例。数量和单价的比值不是一定的。
二、自主合作,探究发现
1、设疑引入(购买笔记本问题)
(1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。
(2)四人小组合作研究:
1、观察表格中的两个量有什么变化?
2、这种变化有什么规律?
3、这种规律与成正比例的量的规律有什么不同?
(3)全班交流。
1、观察表格中的两个量有什么变化?
单价变化(扩大),数量也随之变化(缩小)
2、这种变化有什么规律?
这两个量的乘积总是一定的。
板书:单价x数量=总价(一定)
指出:都是用60元购买笔记本
3、这种规律与成正比例的量的规律有什么不同?
①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。
②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。
(4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?
请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。
(5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)
单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的数量是成反比例的量。
这就是我们今天要认识的成反比例的量。(揭示课题)
2、试一试
师:我们继续来学习反比例,请看大屏幕:
(1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。
然后指名口答,全班校对。
(2)同桌合作讨论(出示要求)
算一算:相对应的两个数的乘积各是多少?
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(3)全班交流。
算一算:相对应的两个数的乘积各是多少?
(乘积都是72)
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
(这个乘积表示一共运的水泥吨数,每天运的吨数x天数=总吨数(一定)板书)
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(略)
3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)
4、用字母式子表示反比例的意义。
教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?
三、巩固应用,深化发展
1、完成“练一练”
让学生判断每袋糖果的粒数和装的袋数是否成反比例。
(1)出示题目和要求
(2)把自己的想法和同桌互相说一说
(3)再全班交流、评议。
2、根据情况选择完成练习十三第6题
出示题目,学生独立思考后依次交流3个问题
3、根据情况选择完成练习十三第7题
(1)出示题目
(2)学生独立思考
(3)全班交流、评议。
4、判断下面每题中的两个量,哪些成反比例?
(1)用同样多的钱购买不同的笔记本的单价和数量。
(2)一个人的年龄与体重。
(3)长方形的面积一定,长方形的长与宽。
(4)长方形的周长一定,长方形的长与宽。
(5)X和Y是两种相关联的量。(机动)
XxY=5 5xX=Y
四、全课总结,拓展延伸
今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。
教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。
教学目的:
1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。
2.使学生进一步认识事物之间的相互联系和发展变化规律。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程():
一、复习
1.让学生说说什么是成正比例的量:
2.用投影片出示下面的题:
(1)下面各题中哪两种量成正比例?为什么?
①笔记本单价一定,数量和总价:
⑨汽车行驶速度一定.行驶的路程和时间。
②工作效率一定.’工作时间和工作总量。
①一袋大米的重量一定.吃了的和剩下的。
(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?
二、导入新课
教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。
三、新课
1.教学例4。
出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。
让学生观察这个表,然后每四人一组讨论下面的问题:
(1)表中有哪两种量?
(2)所需的加工时间怎样随着每小时加工的个数变化?
(3)每两个相对应的数的`乘积各是多少?
学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数
“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)
“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”
学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。
2.教学例5。
用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。
(1)理解题意,填写装订本数。
“谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)
“这40本是怎么计算出来的?”(用600÷15)
“如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。
(2)观察分析表中两种量的变化规律。
让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)
“装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数
15 40
20 30
25 24
一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。
1,单价一定.数量和总价。
2,路程一定,速度和时间。。
3,正方形的边长和它的面积。
1.时间一定,工效和工作总量。
二、导入新课
教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断
两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我
们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。
板书课题:正比例和反比例的比较
三、新课
1.教学例7。
出示例7的两个表:
表1 表2
让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:
在表l中: 在表2中:
相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化
一定。因此,路程和时间 ,路程是一定的。因此,速
成正比例关系。 度和时间成反比例关系
然后提问:
(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/
(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?
教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
板书:速度×时间=路程
=速度 =速度
教师:当速度一·定时,路程和时间成什么比例关系?
教师:当路程一定时,速度和时间成什么比例关系?
教师:当时间一定时。路程和速度成什么比例关系?
2.比较正比例和反比例关系。
教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:
四、巩固练习
1.做教科书第28页“做一做”中的题目。
让学生自己填,并说一说为什么。
2.做练习七的第1—2题。
教师巡视,个别辅导,最后订正。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点?
教学内容:
教科书第103页和第103页下面的做做的题目,练习二十二的第10、11题。
教学目的:
使学生进一步理解正、反比例的意义.能够正确判断成正、反比例的量。
教学过程:
一、正比例和反比例的意义
教师:我们已经学过正比例和反比例的意义,谁能讲一讲正、反比例的意义?(学生回答。)
教师:两种量是成正比例的量或成反比例的量.这两种量的关系就叫做正比例关系或反比例关系。这种关系可以用下面的式子表示:
=k(一定) 或xy=k(一定)
教师出示下列题目让学生判断两种量是不是成比例,成什么比例,并说明理由:
(1)每天看书页数一定,天数和看书的总页数。
(因为 =每天看书页数(一定),所以天数与看书的总页数成正比例关系。)
(2)平行四边形的面积一定,平行四边形的底与高。(因为底高=平行四边形面积(定),所以平行四边形的底与高成反比例关系。)
(3)分数的值大小一定,这个分数的分子与分母。(因为
=分数值(一定)。所以分子与分母成正比例关系。)
(4)差一定,被减数与减数。(因为被减数一减数=差(一定),所以被减数与减数不成比例。)
(5)一批煤,如果每天烧5吨,可烧36天;如果每天烧1吨,可烧45天。天数和每天烧煤的吨数。(因为题目中没有明确说出哪个量是一定的。而536=l80(吨),445=180(吨),可见煤的总量是一定的。因此,有每天烧煤的吨数天数=煤的总吨数。所以天数和每天烧煤的吨数成反比例关系。)
二、正比例和反比例的.比较
教师:单价;数量和总价这三个量每两个量之间有什么样的比例关系:
(1)当单价一定时,数量和总价成什么比例关系?
(2)当数量一定时,单价和总价成什么比例关系?
(3)当总价一定时,单价和数量成什么比例关系?
学生回答后,接着就比较正比例关系和反比例关系。教师让学生回答,再归纳并板书:
三、做教科书第103页做一做的题目。
第1题,教师指名回答,要说明成什么比例的理由。
第2题,教帅先让学生填空,再指名回答并说明理由。
第3题,让学生思考和填空、教师巡视。注意解答时有不同想法的学生。订正时,让有不问想法的学生,说自己的想法和理由。
第4题,学生做题有困难时.教师提示:可以举一个实例先验证,再确定是不是成比例,成为什么比例。订正时,要求学生说明理由。
四、作业
练习二十二的第10、11题。
各位评委:
大家好!
今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。
一、说教材
1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:
1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四、说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
五、说教学过程
(一)创设情境,发现新知
首先提出问题
问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?
【设计意图及教法说明】
在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。
问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,
(1)你能用含有R的代数式表示I吗?
(2)利用写出的关系式完成下表。
R/Ω 20 40 60 80 100
I/A
当R越来越大时,I怎样变化?当R越来越小呢?
(3)变量I是R的函数吗?为什么?
【设计意图及教法说明】
因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。
问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?
【设计意图及教法说明】
学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。
问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
【设计意图及教法说明】
问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。
(二)合作探究,获得新知
1、出示问题
想一想,你还能举出类似的例子吗?
【设计意图及教法说明】
这个环节目的在于让学生亲身经历观察、思考、抽象、概括、补充、完善的过程,让学生尝试用自己的语言说明他们的新发现,培养他们的归纳能力和自主探索与合作交流的良好学习习惯,在这期间教师就是他们的合作者、引路人,边听、边问、边指导,初步形成反比例函数的概念。
2、启发学生建构新知
反比例函数的定义:一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。
反比例函数自变量不能为0!
反比例函数的一般形式:y= k/x(k为常数,k≠0)
反比例函数的变式形式:k=yx,x=k/y(k为常数,k≠0)
【设计意图及教法说明】
这种从不同的问题情境中抽象出相同的数学模型,再进行抽象得出概念的过程,并非教师所强加,而是学生通过自己分析走向概念,突破本节课的难点,使学生的自豪感和成功感在活动中得以提升,体现类比、转化、建模等数学思想,把本节课推向高潮。
(三)反馈练习,应用新知
根据学生认知的差异性,我设计了基础过关和拓展训练两类练习题。
1、基础过关
(1)下列函数的表达式中,x表示自变量,那么哪些是反比例函数?每一个反比例函数相应的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【设计意图及教法说明】
此题较简单,以口答的形式进行,设计的目的是重视基础知识的教学和面向全体学生的教学,并告诫学生判断一个函数是否是反比例函数不能单从形式上判断,一定要严谨认真,同时也完成了随堂练习1。
(2)做一做
①一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
②某村有耕地346、2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
③y是x的反比例函数,下表给出了x和y的一些值:
a、写出这个反比例函数的表达式;
b、根据函数表达式完成下表。
表略。
【设计意图及教法说明】
通过三个实际问题的解决,培养了学生“发现问题”、“解决问题”的能力,也达到了学以致用的目的。
2、能力拓展
(1)你能举个反比例函数的实例吗?与同学进行交流。
(2)y=5xm是反比例函数,求m的值。
【设计意图及教法说明】
问题(1)是一个开放性的题,既解决了随堂练习2,也培养了学生的发散性思维。问题(2)能助于学生抓住关键点,澄清易错点(反比例函数中k≠0),并且加强了新旧知识的联系。
(四)归纳总结,反思提高
通过这节课的学习你有哪些收获?还有哪些问题?与同伴进行讨论。
(如:你学到了什么?懂得了什么?你发现了什么?还有什么困惑?应注意什么?还想知道什么?)
【设计意图及教法说明】通过问题式的小结,让学生再次归纳、总结本节课的重点,弥补教学中的不足。
(五)推荐作业,分层落实
必做题:课本第134页习题1、2题。
选做题:已知y与2x成反比例,且当x=2时,y=-1,求:
(1)y与x的函数关系式。
(2)当x=4时,y的值。
(3)当y=4时,x的值。
【设计意图及教法说明】作业以推荐的形式进行,必做题体现了对新课标下“学有价值的数学”、“人人能获得必要的数学”的落实,选做题体现了让“不同的人在数学上得到不同的发展”。
一、教材分析
本节是《反比例函数》的小结与复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。 通过本节课对本章知识的复习,让学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析式进一步探索并理解反比例函数的性质,能用反比例函数解决某些简单的实际问题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。
二、 教学目标分析
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
三、教学重点难点分析
由于本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力和发展他们的创新精神。所以我确定本节课的教学重点是进一步掌握反比例函数的概念、图像、性质并正确运用。教学难点是反比例函数性质的灵活运用。数形结合思想的应用。
四、教学方法分析
根据教材特点及学生的年龄特点、心理特征和认知水平,我采用合作交流、集体探究的方法启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙
六、教学设计的基本思路
(一)知识梳理:主要说明本章的内容由反比例函数的意义;反比例函数的图象与性质;利用反比例函数解决实际问题三大块组成。
(二)合作交流,解读探究
1.复习反比例函数概念及其等价形式。并设计了相应的配套练习:判断反比例函数并指出其中的K值;结合物理知识写函数关系式,体会数学知识来源于生活,考查学生对反比例函数系数及自变量的指数的掌握情况。
2.复习反比例函数的图象与性质,并用来解决问题。也设计了相应的配套练习:根据K值确定反比例函数所在象限及其一支(X>0)的增减性,根据函数关系式和给定自变量(函数值)求函数值(自变量的值);由图像性质和K值的关系确定m的取值范围;用待定系数法求反比例函数解析式;根据函数增减性及所给函数图像上点的横坐标判断个点函数值的大小,难度较大,学生不易掌握。
3.综合运用:给出一次函数的图像y=ax+b与反比例函数y= 相交的示意图及交点M(2,m)、N(-1,-4)两点。求反比例函数和一次函数的解析式并根据图像写出反比例函数的值大于一次函数的值的X 的取值范围。此类题目在中考中常见。是一次函数和反比例函数的综合应用,主要用数形结合思想和待定系数法求解,可以提高学生的观察、分析、综合应用及合情推理能力。
(三)随堂练习:贯穿于整个课堂教学中,具体内容见课件。
(四)归纳总结:
由学生总结本节课所学习的主要内容:
1.反比例函数的意义;
2.反比例函数的图像与性质;
3.数形结合思想
让学生通过知识性内容的小结,把课堂所学的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)布置作业
(六)课后反思:
1.在本课时的师生互动过程中,积极创造条件和机会,让学生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
2.尽量体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。
3.即时训练——巩固新知。为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把配套练习中的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
4.存在的问题:学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的'太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有完成教学任务。
在学习本节内容的前一节,已经研究了反比例函数的概念,图象和性质,这一节也是本章的重要内容,重点介绍反比例函数在现实世界中无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题。
本节的例题都是现实生活常见的问题,这样设计的`目的是为了更好的体现反比例函数的实际背景,反映数学与实际的关系,即数学理论来源实际又反过来服务实际,这样的安排有助于提高学生把抽象的数学概念应用于实际问题的能力。本课课件的设计当中从简单的问题入手,这样从开头让学生产生信心,不至于一开始就对实际问题产生恐惧从而厌倦数学,开始都是直接得到答案的题目,从而逐步加深,在例题当中设计多问,简化问题的难度,逐步分解问题,从而让学生在过程当中体验把复杂的问题简易化的方法。而且在课件和练习上面出现不同层次的问题,适合各个层次的学生能参与到课堂的练习上,使得各个层次的学生都有收获。
在本节课中还是出现了一些小问题,教师在讲解的时候还是讲得比较多,要多锻炼学习说的能力,由于是实际问题的讲述,所以课堂的气氛还是欠活跃,这是我以后要注意努力的方向。
一、知识与技能
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。
二、过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观
1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点
掌握从物理问题中建构反比例函数模型。
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备
多媒体课件。
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值。
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用。
教师应给“学困生”一点物理学知识的引导。
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,I=10R 。
(2) 当I=0.5时,R=10I=100.5 =20(欧姆)。
师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?
生:这是古希腊科学家阿基米德的名言。
师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力阻力臂=动力动力臂(如下图)
下面我们就来看一例子。
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。
师生行为:
先由学生根据“杠杆定律”解决上述问题。
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。
全文阅读已结束,如果需要下载本文请点击
发布时间:2023-11-28
本文将详细剖析和分析“反比例课件”的多个方面,敬请您将此页面加入收藏夹以备不时之需。教案课件是教师上课前的准备工作,因此对于随意书写教案课件,教师们需要注意。要知道,一个优秀的教案课件应该有层次分明的知识点设计。...
发布时间:2024-02-03
教案课件是老师工作当中的一部分,每个老师对于写教案课件都不陌生。教案是推进现代教学方法和手段的必要途径,好的教案课件是怎么写成的?好工具范文网小编想向大家介绍一些与“反比例函数教案”相关的知识,为了方便未来阅读建议您收藏本页的网址!...
发布时间:2023-12-08
教学目标:1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。重点难点:1.使学生掌握解比例的'方法,学会解比例...
发布时间:2023-11-17
每位教师在上课之前都需要事先准备好教案和课件,现在到了他们开始编写教案和制作课件的时候了。一份完整的教案有助于激发教师的创新和探索精神。接下来,编辑将为大家介绍一下“比例的课件”是什么东西,请务必保存本文,以备将来需要时使用!...
发布时间:2024-05-02
作为一名专为他人授业解惑的人民教师,有必要进行细致的课件设计准备工作,课件设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那要怎么写好课件设计呢?以下是小编精心整理的《比例的意义与基本性质》课件设计,希望能够帮助到大家。比例的基本性质课件 篇1 一、教学目标 1.知识与...
发布时间:2023-11-30
教师们需注意,教案课件是为上课前做的准备工作,随意编写可能会带来问题。为了适应学生反应多样的特点,我们在写教案课件时应该考虑哪些方面?本文将带您探索“解比例课件”的不同角度和方面,我们会持续发布有价值的信息,助您学习和成长!...
发布时间:2024-01-07
教师在教学过程中必须提前计划好每节课的教学课件,这是非常重要的。每位老师都需要不断完善教案课件的设计,以确保它能够准确地反映教学过程中的创造和智慧。小编为大家整理了关于“比例尺课件”的相关资料,供大家参考。分享是一种无私的付出,如果您认同本文,请将它分享给身边的朋友!...
发布时间:2023-11-26
教学课件的规划对于老师来说是必不可少的,因为它帮助老师更好地设计每节课的教学内容。每个老师都需要不断完善自己的教案课件,以便顺利进行课堂教学。下文将简要地介绍和阐述“比例问题教案”,希望能给您带来新的体验和想法!...
最新文章
推荐栏目