搜索更多内容
有理数课件(精华11篇)
为使学生掌握有理数减法法则并熟练地进行有理数减法运算;如下是小编给大家整理的人教版七年级上册数学有理数课件,希望对大家有所作用。
尊敬的各位评委、各位老师,我是来自洪洞县有理数的加法大槐树一中的数学教师,我叫xxx,今天的说课题目是【有理数的加法法则】第一节。
我们知道有理数是整个代数的基础,而有理数的加法运算又是初中数学的基本运算,因此可以说有理数这一章,是整个初等数学的奠基石,它所隐含的丰富的内容反映了中学阶段许多重要的数学思想方法。
下面我将从4个方面来阐述我对这节课的理解和设想:
教材分析;教法分析;学法指导;教学过程
一、教材分析:
在教材分析中我将谈一下几点:
(一)、教材的地位与作用:
【有理数的加法法则】是初中华师版七年级上册第二章第六节的内容,在这之前,学生已经在小学掌握了算术运算,而前边的学习又初步掌握了有理数的基本概念,有理数的加法运算是建立在小学运算的基础之上的,又与小学加法运算有很大的区别,如小学的加法运算不需要确定符号运算单一,而有理数的加法不但要计算绝对值的大小而且还要确定结果的符号,由算术到代数式学生从小学到初中的一个新的转折点。而有理数的加法又是有理数运算的主要内容是初等数学运算的基础,同时又是学习物理、化学等相关学科的基础。因此,这部分内容在学习数学及其他方面占有相当重要的地位及作用。
(二)、教学内容:
有理数的加法的教学共分2课时,这是有理数的加法第一课时。本节课主要讲授有理数加法的意义,归纳有理数加法的法则,能区别有理数的和与小学运算的和的不同,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
(三)、教学目标:
倡导有理数的加法要以学生为主,让学生参与"观察、猜想、验证、归纳、运用"的全过程。以培养创新意识与培养能力为宗旨。从教材的特点和初一学生的认知水平,以教学思维为出发点。我设计如下的教学目标:
1、知识目标:使学生有理数加法的意义,掌握有理数加法的法则,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。
2、能力目标:在本节课的教学中,借助数轴向学生渗透数形结合的思想,利用绝对值把有理数的加法运算化归为小学算术的加减运算,体现化归的思想,以及适度加强法则的形成过程,着重培养学生"观察、猜想、验证、归纳、运用"等综合能力。
3、情感目标:遵循学生学习的认知规律和初一学生的身心特点,按照启发式教学原则用发现法和直观教学法激发学生探究教学的兴趣,培养学生敢于探索、乐于创新的精神。
4、教学重点、难点和教学关键:
本节课的教学重点是:有理数加法的法则
难点是:异号两数相加的法则,不仅要确定喝的符号而且表明上的和是化归为算术减法来解决的,学生不好掌握,因此我确定本节课的难点是异号两数相加的法则;
解决问题的关键是有理数加法中结果符号的确定。
二、教法分析:
为了充分调动学生的积极性,变被动学习为主动学习使教学生动、有趣、高效,我采...
查看详情>>与“有理数课件(精华11篇)”相关的文章
有理数的加法课件锦集
作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。那么你有了解过说课稿吗?下面是小编为大家整理的《有理数的加法》说课稿,希望能够帮助到大家。
教学目的
1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.通过有理数的加法运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用有理数的加法法则进行加法运算.
难点:有理数的加法法则的理解.
教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;3与-3;-3与0;
-2与+1;-+4与-3.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.
(三)进行新课 有理数的加法(板书课题)
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图 :略
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图 :略
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5),同号两数相加
(-4)+(-5)=-( ),取相同的符号
4+5=9把绝对值相加
(-4)+(-5)=-9.
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o...
查看详情>>与“有理数的加法课件锦集”相关的文章
有理数的乘法课件模板12篇
一、说教材:
(一)地位、作用:
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
1、经历探索有理数的乘法运算律的过程,发展学生观察、归纳等能力
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率
3、能运用乘法运算律简化运算,进一步提高学生的运算能力
(三)重点、难点:
运用乘法的运算律进行乘法运算
运用乘法法则和乘法运算律进行运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教材程序:
第一步
现在用我们所学的知识,大家解一下这几道题:
6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
乘法的交换律:两个数相乘,交换因式的位置,积不变。
ab=ba第二步
现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律
乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练
(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步
大家再试试这2道题
(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法
例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法
解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦
技能训练,先动手试一试,再讲解
70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+...
查看详情>>与“有理数的乘法课件模板12篇”相关的文章
有理数课件
制作教案课件是我们教师工作的一部分,所以每天我们都会按时按质写好教案课件。编写教案要注重知识和能力的结合与提升。今天我们给大家带来了一篇关于“有理数课件”的相关文章,如果您有问题,请告诉我们,我们愿意为您提供帮助!
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
标题:"理性数学,培养深思熟虑的思维方法"
导语:
有理数是我们日常生活中最常接触到的数,也是数学中最重要的概念之一。学好有理数,不仅对学习其他数学知识有很大帮助,还对培养学生的逻辑思维和解决问题的能力具有重要意义。基于此,我们制定了这个主题,旨在通过有理数的学习,培养学生深思熟虑的思维方法。
一、引入:
1. 生活中有理数的应用例子,如温度、身高、年龄等。
2. 引出有理数的定义和性质。
二、示范:
1. 提供一个实际问题:李明从家里到学校的距离是3km,他每天早上骑自行车,比走路快4分钟到达学校,问他每分钟骑自行车走多少米?
2. 通过实际解答问题,引导学生认识到有理数在实际问题中的应用。
三、知识介绍:
1. 有理数的定义
2. 有理数的分类:正数、负数、零,以及它们之间的大小关系。
3. 有理数的加减乘除运算法则。
四、应用拓展:
1. 提供一道有理数的综合应用题:一艘船在正东方向以每小时10千米的速度前进,一艘船在正南方向以每小时8千米的速度前进。如果两艘船同时出发,问多长时间后两艘船相距最近?
2. 让学生利用所掌握的有理数知识,分析并解决这个问题。
五、分组合作:
1. 将学生分成小组,每个小组设计一个类似的有理数应用问题。
2. 学生进行自主解答,并在小组内讨论和分享。
六、问题剖析:
1. 设计一些有理数应用问题,让学生分析问题并提出解题思路。
2. 针对学生的问题,提供引导性的分析和解答。
七、课堂总结:
1. 回顾有理数的定义、分类和运算法则。
2. 强调有理数在解决实际问题中的应用。
3. 鼓励学生要善于思考、动脑筋,培养深思熟虑的思维方法。
八、课后作业:
1. 整理课上讨论的问题和解法,写成报告或小论文...
查看详情>>有理数课件精华
编辑特别推荐您阅读一下“有理数课件”,每一位教师都需要在上课前准备好自己的教案和课件。本学期又到了撰写教案和制作课件的时候了。教案是课堂教学的重要支持材料。请大家认真阅读以下提供的信息,仅供参考!
一、有理数的意义
1.有理数的分类
知识点:大于零的数叫正数,在正数前面加上﹣(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上﹣号后这个量就有了完全相反的意义;3, ,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴
知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数
3. 相反数
知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值
知识点: 一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a0,则∣a∣=a. 若a=0,则∣a∣=0. 若a0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算
1. 有理数的加法
知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)
多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2. 有理数的减法
知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即 a-b=a+(-b)。
注意:运算符号+加号、-减号与性质符号+正号、-负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3. 有理数的加减混合运算
知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把+号省略,使算式变得更加简洁。
4. 有理数的乘法
知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于...
查看详情>>