【#实用文# #有理数的乘法教案精选#】在许多资料中,我挑选了一篇非常有用的“有理数的乘法教案”,希望这些内容能对你有所帮助。教案和课件是老师们提前准备的工具,因此需要注意仔细编写。教案是课堂教学的重要指南。
本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。
(二)教学目标:
2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
现在用我们所学的知识,大家解一下这几道题:
6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。
现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律
乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练
(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步
(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?
一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。
乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法
例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法
解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦
70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5
三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12
①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.
通过对问题的变式探索,培养观察、分析、抽象的能力.
通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.
做一做 出示一组算式,请同学们用计算器计算并找出它们的.规律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
想一想 你们发现积的符号与因数的符号之间的关系如何?
总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.
两数相乘,同号得正,异号得负.
想一想 两数相乘,积的绝对值是怎么得到的呢?
教学目标: 1、让学生了解有理数乘法的意义,掌握有理数乘法法则,并能熟练、准确地有理数乘法法则进行有理数乘法运算。 2、通过探究式的教学,渗透化归、分类等数学思想方法,培养学生的观察、比较、归纳的能力。 3、让学生经历知识的产生与形成的过程,培养学生勇于探究的精神。 教学重点:有理数乘法的运算及倒数的概念 教学难点:探索有理数的乘法法则及符号的确定。 教学过程设计: 一、情境引入 一只蜗牛沿直线L爬行,它现在的位置恰好中L的点O上. 我们规定:向左为负,向右为正,现在前为负,现在后为正 (1) 如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 (2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置? 可以表示为 (3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置? 可以表示为 (4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置? 可以表示为 二、思考并解决以下问题设计:(组内讨论) 问题1、观察由P28-29问题得出的式子: (1)(+2)×(+3) =+6; (2)(-2)×(+3 )=-6; (3)(+2)×(-3)=-6; (4)(-2)×(-3)=+6; 思考:积的符号与两因数的符号有什么关系?积的绝对值与两因数的绝对值有什么关系? 任意数与0相乘,得数是多少? 因此,我们就有有理数的`乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0. 问题2、①自学P30 例1 ②数a的倒数是 (a≠0),为什么要a≠0? ③完成P30练习1、3 、 问题3、自学P30 例2 完成P30练习2、 问题4、推广:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 几个数相乘,如果其中有因数为0,积等于______。 问题5、自学P31 例3 完成P32练习三、学生展示(要提醒展示同学语言表达要干净、准确、流畅。其余同学要注意做好笔记,并认真倾听) 1组展示问题1及P42 练习1 2组展示问题2 3组展示问题3 4组展示问题4 5组展示问题5 6组展示问题6 四、问题延伸 1、若ab<0,a>0则b 0 若a<b<0,则ab 0 ,(a+b)(a-b) 0 2、下列说法错误的是( ) A.一个数同1相乘,仍得这个数 B. 一个数同-1相乘,积是原数的相反数 C.一个数同0相乘,仍得0 D. 互为相反数的两个数之积为1 3、如果ab=0,那么一定有( ) A. a=b=0 B.a=0 C.b=0 D.a、b中至少有一个为0 4、如果 mn<0,那么必有( ) A. m<0 ,n >0 B. m >0,<0 C. m ,n 异号 D.m,n 同号 5、若a+b>0 ,且ab<0,那么必有( ) A. a>0 ,b<0 B. a<0 b >0 C.a,b异号,且正数的绝对值大 D.a,b 异号,且负数的绝对值大 五、信息反馈 课本P38 2、7、(1)(2)(3)P39 10、、1、12、 六、课后反思:
教学目的:
1、要求学生会进行有理数的加法运算;
2、使学生更多经历有关知识发生、规律发现过程。
有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。
2、知识形成:
(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
一、 教学内容
人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.
二、学情分析
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学手段
制作幻灯片,采用多媒体的现代课堂教学手段.
六、教学方法
注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。
七、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.
2、 学生探索、归纳法则
学生分为四个小组活动,进行乘法法则的探索。
(1)教师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负.
a.+ 2 ×(+3)
+2看作向右运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
+2 ×(+3)=
b. -2 ×(+3)
-2看作向左运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
-2 ×(+3)=
c. +2 ×(-3)
+2看作向右运动的速度,×(-3)看作运动3分钟前.
结果:3分钟前的位置
+2 ×(-3)=
d. (-2) ×(-3)
-2看作向左运动的速度,×(-3)看作运动3分钟前。
结果:3分钟前的位置
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是仍在原处。
思考:积的符号与两个因数的符号有什么关系?
积的绝对值与两个因数的绝对值又有什么样的关系?
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)
3、 运用法则计算,巩固法则。
例1计算:
(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:
有理数中仍然有:乘积是1的两个数互为倒数.
例2. 见课本p30页
4、 分层练习,巩固提高。
巩固练习
(1)确定下列两个有理数积的符号:
(2)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
(3).判断下列方程的解是正数、负数还是0。
(1) 4x= -16 (2)-3x=18
(3)-9x=-36 (4)-5x=0
5、小结
(1)有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算:
先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
6.作业布置
课本p30页练习1,2,3.
课后反思:
本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用.对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法.
教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力.
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
熟练有理数的乘法运算并能用乘法运算律简化运算。
让学生通过观察、思考、探究、讨论,主动地进行学习。
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
1.计算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
全文阅读已结束,如果需要下载本文请点击
发布时间:2024-01-06
教案课件是老师教学工作的起始环节,要求每位教师都应该准备教案课件。教案是注重学生创新与实践的重要方式。这篇“有理数加法的教案”的文章充满了灵感和智慧,非常值得收藏。希望这些参考内容能够为你的工作或学习提供有力的支持!...
发布时间:2024-03-25
一、说教材:(一)地位、作用:本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。(二)教学目标:1、经历探索有理数的乘法运算律的过程,发展学生...
发布时间:2024-02-13
制作教案课件是我们教师工作的一部分,所以每天我们都会按时按质写好教案课件。编写教案要注重知识和能力的结合与提升。今天我们给大家带来了一篇关于“有理数课件”的相关文章,如果您有问题,请告诉我们,我们愿意为您提供帮助!...
发布时间:2024-02-27
笔者特别为大家准备了一篇与“有理数教案”有关的文章,供大家参考。对于刚入职的教师来说,需提前准备好课堂所需的教案和课件,每位教师都要精心设计教学内容。创新独特的教学课件制作有助于激发学生的学习激情。如果您想再次浏览这篇文章,请务必及时收藏!...
发布时间:2023-11-03
编辑特别推荐您阅读一下“有理数课件”,每一位教师都需要在上课前准备好自己的教案和课件。本学期又到了撰写教案和制作课件的时候了。教案是课堂教学的重要支持材料。请大家认真阅读以下提供的信息,仅供参考!...
发布时间:2024-03-01
教案课件在老师少不了一项工作事项,写教案课件是每个老师每天都在从事的事情。 学生反应的准确性可以帮助教师消除教学中的顾虑。为了使您更加满意我们编辑了“乘法原理教案”,欢迎您来参阅本文祝您愉快!...
发布时间:2024-01-08
教学目的与要求:1.经历编制8的乘法口诀的过程,体验8的乘法口诀的来源。2.理解每一句乘法口诀的意义,能记住8 的乘法口诀并进行简单计算。3.让学生获得成功的喜悦,培养学生学习数学的'兴趣。教学重点:理解每一句乘法口诀的意义,明白乘法口诀的来源。1、口算下面各题,并说出用哪一句口诀?3×4,5×6,...
发布时间:2024-03-14
学情分析:学习本小节后,对后面学习较难的6、7、8、9的乘法口诀打下了良好的基础且对于学生的运算能力、推导能力有进一步的帮助。学生能够背诵2、3、4的乘法口诀,能够掌握“读作”“写作”的不同要求并能够理解每个乘式的含义。本节的内容在教材中起着主导的地位,在此之前,已经学过了5的乘法口诀,而在此后,又...
最新文章
推荐栏目