【#实用文# #2024高三数学教案怎么写(收藏8篇)#】作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是好工具范文网小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
一、指导思想
高三数学教学要以《全日制普通高级中学教科书》、20xx年普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本, 强化质量的意识,务实规范求创新,科学合作求发展。
二、教学建议
1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。
《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
注意08年高考的导向:注重能力考查,反对题海战术。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。08年的高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。
2、充分调动学生学习积极性,增强学生学习的自信心。
尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。
3、注重学法指导,提高学生学习效率。
教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。
4、高度重视基础知识、基本技能和基本方法的复习。
要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。
5、教学中要重视思维过程的展现,注重学生能力的发展。
在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的习惯。
6、高中的重点知识在复习中要保持较大的比重和必要的深度。
近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。
7、 重视通性、通法的总结和落实。
教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提高解决问题的能力。
8、 渗透数学思想方法, 培养数学学科能力。
《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。 我们在复习中要加强数学思想方法的复习, 如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。 以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。切忌空谈思想方法,要以知识为载体,润物细无声。
9、建议在每块知识复习前作一次摸底测试,(师、生)做到心中有数。坚持备课组集体备课,把握轻重缓急,避免重复劳动,切忌与学生实际不相符。
总之,我们要加强学习、研究,注重对学生、教材、教法和高考的研究,总结经验和吸取教训,搞好第一轮复习,为第二轮复习打好基础。
三、教学进度安排
9月底前完成高三选修课内容。期中考试的范围除选修课内容外,还要涉及到排列组合、二项式定理、概率、简易逻辑、函数、不等式、数列等内容。
期中考试之后复习:向量、三角、立体几何、 解析几何等内容.
第一轮的复习要以基础知识、基本技能、基本方法为主,为高三数学会考做好准备,不要赶进度,重落实。
四、进修活动
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的`定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
教学目标
1.理解同向不等式,异向不等式概念;
2.掌握并会证明定理1,2,3;
3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;
4.初步理解证明不等式的逻辑推理方法.
教学重点:定理1,2,3的证明的证明思路和推导过程
教学难点:理解证明不等式的逻辑推理方法
教学方法:引导式
教学过程
一、复习回顾
上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:
这一节课,我们将利用比较实数的方法, 来推证不等式的性质.
二、讲授新课
在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.
1.同向不等式:两个不等号方向相同的不等式,例如: 是同向不等式.
异向不等式:两个不等号方向相反的不等式.例如: 是异向不等式.
2.不等式的性质:
定理1:若 ,则
定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.
证明
由正数的相反数是负数,得
说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.
定理2:若 ,且 ,则 .
证明:
根据两个正数的和仍是正数,得
∴ 说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.
定理3:若 ,则
定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.
证明
说明:
(1)定理3的证明相当于比较 与 的大小,采用的是求差比较法;
(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若 ,则 即 .
定理3推论:若 .
证明:
说明:
(1)推论的证明连续两次运用定理3然后由定理2证出;
(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;
(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;
(4)定理3的逆命题也成立.(可让学生自证)
三、课堂练习
1.证明定理1后半部分;
2.证明定理3的逆定理.
说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.
课堂小结
通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.
课后作业
1.求证:若
2.证明:若
板书设计
§6.1.2 不等式的性质
1.同向不等式 3.定理2 4.定理3 5.定理3
异向不等式
证明 证明 推论
2.定理1 证明 说明 说明 证明
第三课时
教学目标
1.熟练掌握定理1,2,3的应用;
2.掌握并会证明定理4及其推论1,2;
3.掌握反证法证明定理5.
教学重点:定理4,5的证明.
教学难点:定理4的应用.
教学方法:引导式
教学过程:
一、复习回顾
上一节课,我们一起
学习了不等式的三个性质,即定理1,2,3,并初步认识了证明不等式的逻辑推理方法,首先,让我们来回顾一下三个定理的基本内容.
(学生回答)
好,我们这一节课将继续推论定理4、5及其推论,并进一步熟悉不等式性质的应用.
二、讲授新课
定理4:若
若
证明:
根据同号相乘得正,异号相乘得负,得
当
说明:(1)证明过程中的关键步骤是根据“同号相乘得正,异号相乘得负”来完成的;
(2)定理4证明在一个不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变.
推论1:若
证明:
①
又
∴ ②
由①、②可得 .
说明:(1)上述证明是两次运用定理4,再用定理2证出的;
(2)所有的字母都表示正数,如果仅有 ,就推不出 的结论.
(3)这一推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.
推论2:若
说明:(1)推论2是推论1的特殊情形;
(2)应强调学生注意n∈N 的条件.
定理5:若
我们用反证法来证明定理5,因为反面有两种情形,即 ,所以不能仅仅否定了 ,就“归谬”了事,而必须进行“穷举”.
说明:假定 不大于 ,这有两种情况:或者 ,或者 .
由推论2和定理1,当 时,有 ;
当 时,显然有
这些都同已知条件 矛盾
所以 .
接下来,我们通过具体的例题来熟悉不等式性质的应用.
例2 已知
证明:由
例3 已知
证明:∵
两边同乘以正数
说明:通过例3,例4的学习,使学生初步接触不等式的证明,为以后学习不等式的证明打下基础.在应用定理4时,应注意题目条件,即在一个等式两端乘以同一个数时,其正负将影响结论.接下来,我们通过练习来进一步熟悉不等式性质的应用.
三、课堂练习
课本P7练习1,2,3.
课堂小结
通过本节学习,大家要掌握不等式性质的应用及反证法证明思路,为以后不等式的证明打下一定的基础.
课后作业
课本习题6.1 4,5.
板书设计
§6.1.3 不等式的性质
定理4 推论1 定理5 例3 学生
内容 内容
证明 推论2 证明 例4 练习
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析.
培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的.角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
一、指导思想和教学目标
以现代教育理论,教学大纲和考纲为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育。不仅使学生掌握高中数学基础知识与能力,而且要全方位培养学生的创新意识,创新精神,创新能力和实践能力,争取本学年我校高三数学教学上新台阶。
二、教学计划与要求
本学期为专题复习与综合考试相结合。要精选专题,紧扣高考内容,抓紧高考热点与重点,授课时脚踏实地,讲透内容;通过测评,查漏补缺,既提高解决综合题的分析与解题能力,又能调适心理,使学生进入一个良好的心理和竞技状态
三、教材分析
本学期教材:高中全部必修、选修教材。教辅资料:《名师一号专题复习大考卷》及衡水二轮复习资料.
高考要求
1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能 力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。
2、重视数学思想方法的考查,重点考查转化思想、数形结合思
想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。
3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。
4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。
5、注重学生创新意识的`考查,注重学生创造能力的考查。
四、学情分析
三班共有学生39人,四班共有学生37人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。
五、具体方法措施
1、进一步转变教育观念,真正做到面向全体学生,尊重学生的身心发展规律。
不能因为是复习阶段而“满堂灌”,惟恐学生吃不饱,欲速则不达。在教学过程中处理好几个矛盾:一是讲和练的统一;二是量和内容的整合;三是自我探究和他人帮助的协调。每天采用有针对性的内容进行限时小剂量的过关练习,帮助差生争取基本分,学生可以解决,鼓
励他自己完成,克服机械模仿带来的负迁移,同时增强信心。注意用分层教学来落实全体性与差异性。不能一个水平,一个内容,一个进度对待所有学生,既要求保底,又要大胆放飞。能达到什么水平就练什么水平的试题,保持这个水平是首要的,同时鼓励学生根据自己实际,大胆向前冲。对于基础较薄弱的学生,应多鼓励多指导学法。因为进入复习阶段,这些学生会无所适从,很容易产生放弃念头,教师的关心与鼓励,是他们坚持下去的良药。
2、加强学习,研究,注重学生、教材、教法和高考的研究,总结经验和吸取教训。
进一步探索和研究考试中数学科备考方法和措施,认真研究近几年高考数学试卷,树立以教研求发展,向教改要质量的思想。
3、加强常规教学的研究和管理。
我们提出了“精细化的备课,精品化的授课,精选试卷”的要求。我们还要充分发挥各位数学教师的群体智慧,特别是有高考经验的教师。大家分工合作,多研究,多交流,既要集体备课又要主要配合不同班的差异,因材施教,根据数学科的特点,切实做到“一天一小练,一周一大练,一月一综合测”。这可以使学生提高解题能力,积累临场经验,发现问题,及时寻找补救措施,强化复习效果。
4、做好辅导工作作为科任,关注所教学生各科学习成绩,从学生利益出发,制定适合的辅导计划。如各科成绩较平均,数学有潜力,就要指导与鼓励他们冒尖,这主要从精选综合题加强训练入手;若除
了数学,其他科目都好的,就要利用课余时间,适当补课,当然,鼓励与调动其自身的学习积极性也是很重要的。
5.认真落实月考,考前作好指导复习,试卷讲评起到补缺长智的作用。
6.继续抓紧培优补差工作,让优等生开阔知识视野,丰富各种技能,达到思维多角度,解题多途径,效果多功能之目的。让弱科学生基础打牢,技能提升,方法灵活得当,收到弱科不弱之效果。 20xx年2月
一、教学内容分析:
本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计
(一)知识准备、新课引入
提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??
提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]
(二)判定定理的探求过程
1、直观感知
提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]
2、动手实践
教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行
(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??
温馨提示:
作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题
(三)定理运用,问题探究(多媒体幻灯片演示)
1、想一想:
(1)判断下列命题的真假?说明理由:
①如果一条直线不在平面内,则这条直线就与平面平行()
②过直线外一点可以作无数个平面与这条直线平行( )
③一直线上有二个点到平面的'距离相等,则这条直线与平面平行( )
(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]
2、作一作:
设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?
先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]
3、证一证:
例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平
面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。
思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。
思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。
[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]
4、练一练:
练习1:见课本6页练习1、2
练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。
变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。
[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]
(四)总结
先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):
1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行
3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。
七、教学反思
本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。
一、总的情况
执教高三189、191两个理科班,总人数115人。189班学习习惯不好,边缘生特别多;优生少且普遍基础不好,习惯差,学习主动性不强;191班一些学生成绩极不稳定,191班培尖任务艰巨。
二、指导思想
研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
三、教学设想
㈠总的原则
1、认真研读XX数学考试大纲及湖南省考试说明的说明,做到宏观把握,微观掌握,注意高考热点,特别注意长沙的信息。根据样卷把握第二、三轮复习的整体难度。
2、不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。
3、立足基础,不做数学考试大纲以外的东西。精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试大纲的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目。利用历年的高考数学试题作为复习资源,要按照新教材以及考试大纲的要求,进行有针对性的训练。严格控制选题和做题难度,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
㈡.体现数学学科特点,注重知识能力的提高,提升综合解题能力
1、加强解题教学,使学生在解题探究中提高能力。
2、注重联系实际,要从解决数学实际问题的角度提升学生的综合能力。
不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。
㈢合理安排复习中讲、练、评、辅的时间
1、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”
2、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果
3、注重实效,努力提高复习教学的效率和效益
1、淡化各自为战,加强备课小组交流合作,资源共享。
2、坚持学生主题,教师主导。
3、更新教学手段,提高复习效率
(1)用电脑多媒体技术辅助数学复习教学,提高课堂教学效率。
(2)利用电脑课件和积件,突破教学难点。
4.注重学法指导及心理辅导
(1)及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。
(2)针对不同学生的实际水平,合理安排教学难度,有利于学生成功情感体验,促进其提高。
(3)加强边缘生的个别辅导。a类边缘生采用各个击破,b类边缘生抓基础,促能力,a类边缘生注意备课组集体研究,个别指导;b类边缘生手把手的教,主要课堂重点关注,课后重点辅导。㈤第二、三轮复习穿插进行
四、教学重点
1、数学思想方法
2、教材的重点、高考的热点
3、依据新大纲、夯实基础,突出新增内容,新课程增加内容中的向量、概率以及概率与统计、导数等的教学。函数,解析几何,立体几何,数列仍是重点。
4、注意以单元块的.纵向复习为主到综合性横向发展为主。
从数和形的角度观察事物,提出有数学特点的问题,注重知识间的内在联系与综合。
注意知识的交叉点和结合点。
五、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
④适当选做各地模拟试卷和以往高考题,逐渐弄清高考考查的范围和重点。
第三轮复习,大约一个月的时间,也称为“策略篇”。老师主要讲述“选择题的解发、填空题的解法、应用题的解法、探究性命题的解法、综合题的解法、创新性题的解法”,教给同学们一些解题的特殊方法,特殊技巧,以提高同学们的解题速度和应对策略为目的。同学们应做到:
①解题时,会从多种方法中选择最省时、最省事的方法,力求多方位,多角度的思考问题,逐渐适应高考对“减缩思维”的要求。
②注意自己的解题速度,审题要慢,思维要全,下笔要准,答题要快。
③养成在解题过程中分析命题者的意图的习惯,思考命题者是怎样将考查的知识点有机的结合起来的,有那些思想方法被复合在其中,对命题者想要考我什么,我应该会什么,做到心知肚明。
最后,就是冲刺阶段,也称为“备考篇”。将复习的主动权交给学生。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,这阶段要求学生直接、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向,并要求学生做到:
①检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练和突击措施(可请老师专门为你拎一拎);锁定重中之重,掌握最重要的知识到炉火纯青的地步。
②抓思维易错点,注重典型题型。
③浏览自己以前做过的习题、试卷,回忆自己学习相关知识的历程,做好“再”纠错工作。
④博览群书,博闻强记,使自己见多识广,注意那些背景新、方法新,知识具有代表性的问题。
⑤不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考
六、目标承诺
1、毕业会考通过率不低于95%。 2、高考数学成绩不拖后腿。 3、高考人平分在重点学排名不低于XX年。
七、时间及内容安排
1、导数(4课时) 2、立体几何(16课时)(3月18日) 3、函数、方程、不等式;(3月19日)
(1)函数的性质(2课时)
(2)二次函数(2课时)
(3)函数的综合运用(2课时)
4、数列;(2课时) 5、不等式 (2课时)
6、三角函数 (2课时) 7、向量及应用;(2课时)
8、解析几何
(1)轨迹问题;(2课时)
(2)总和问题(2课时)
9、立体几何
(1)平行与垂直;(2课时)
(2)空间角与距离(2课时)
10、概率与统计(2课时)
11、导数(2课时)
12、选择题的解法(1课时)
13、填空题的解法(1课时)
14、综合测试(做信息题,每周一套,12课时)
15、周练(做小题,每月三套)
16、模拟练习四套(5月10日开始至5月28日中的连堂客)
17、查漏补缺(5月10日开始至5月28日,非连堂课)
18、考前信息练习
19、回归课本
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
四、教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的`本质属性,培养学生的唯物史观.
五、教学重点和难点
1.教学重点
理解并掌握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六、教法学法以及预期效果分析
高中数学优秀教案高中数学教学设计与教学反思
“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
七、教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由 ,你能否知道sin2100的值吗?引如新课.
设计意图
高中数学优秀教案 高中数学教学设计与教学反思
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
(二)新知探究
1. 让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系.
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫.
(三)问题一般化
探究一
1.探究发现任意角 的终边与 的终边关于原点对称;
2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角 与 的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1). ;(2). ;(3). .
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究
全文阅读已结束,如果需要下载本文请点击
发布时间:2024-08-27
作为教育工作者,精心准备教案是必不可少的。通过细致的教案,我们可以提升教学质量,达到预期的教学效果。教案应该怎么写呢?以下是小编为大家收集的趣味数学教案,仅供参考,大家一起来看看吧。数学教案 篇1 教学目标: 1、通过比较分数的大小,加深对分数意义的理解。 2、能比较分母相同的或分子是1的两个...
发布时间:2024-02-28
想要更好地掌握这个话题不妨阅读一下“苏教数学教案”,热烈欢迎您来对本文参考阅读。老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。要知道一份优秀的教案课件应当与时俱进,还需包含各个知识点。...
发布时间:2024-09-13
作为一名教学工作者,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。那么应当如何写教案呢?下面是小编为大家整理的大班数学教案7篇,仅供参考,大家一起来看看吧。大班数学教案 篇1 活动目标: 1、正确感知10以内物体的数量,探索、发现自然数列的等差关系。 2、学习用语言表述“x比x...
发布时间:2023-10-22
本文介绍的" 数学教案 "绝对是小编今天力荐的优秀文章,绝对不会让你失望。每位教师都必不可少的课件之一就是教案课件,因此你可能需要每天都去撰写教案。教案是教师引导学生掌握知识的必要工具。如果你觉得这份干货对你有价值,请不要吝啬分享,让更多人受益!...
发布时间:2023-10-20
活动目标:1、幼儿说出2―9各数与其相邻数的关系(多1或少1的数)。2、让幼儿熟练地找出2―9个数的相邻数。3、理解相邻两数间多1或少1的关系。4、获得参与数学活动的快乐体验,培养幼儿的专注力、想象力、和乐于助人的精神。活动准备:1、1― 10的数字头饰一套,1―10的数字卡一套。2、已学会10以内...
发布时间:2023-12-02
为了促进学生掌握上课知识点,老师需要提前准备教案,老师在写教案课件时还需要花点心思去写。完整的教案有助于促进教师的创新和探索精神,课件教案应该怎么做?在这里栏目小编为您准备了一篇令您满意的“初中数学教案”,如需更多产品介绍请继续浏览我们的网站!...
发布时间:2024-08-14
作为一名教职工,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的有理数的加法教案,欢迎大家分享。加法数学教案 篇1 教学目标 1. 会把有理数的加减法混合运算统一为加法运算; 2. 会把省略加号和括号的有理数加减混合...
发布时间:2023-12-14
教学内容:北师大版三年级数学课本23-24页的相关内容。教学目标:1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。3、情感态度与价值观:在学生的学习活动中,让...