搜索更多内容
因式分解小班教案(汇集7篇)
教材分析:
本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:
本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
设计理念:
新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的'自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。
教学目标知识与技能目标:
会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。
过程与方法目标:
通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。
情感态度与价值观:
通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
重点、难点:重点:
合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。
难点:
二次根式加减法的实际应用。
关键问题 :
了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。
教学方法:.
1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。
2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。
3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导...
查看详情>>因式分解教案汇总八篇
教学内容:
分解质因数
教学目标:
1、使学生了解每一个合数,都可以写成几个质数相乘的形式
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
教学过程:
一、复习
学生回答质数的概念,并举例说明
二、引入新课
1、教学例2
把合数10、24和63分别用质因数相乘的形式表示出来。
10=2×5
24=2×2×2×3
63=3×3×7
(1)一个合数可以用几个质数相乘的形式表示
(2)一个合数可以写成几个质数相乘的形式
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念
(1)质数,因数,质因数,分解质因数
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3
把15、42、60分解质因数
(1)用短除法分解质因数
(2)什么是短除法
(3)练习
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习
1、练一练
四、总结归纳,布置作业
教学反思:
我认为这节课最重要的的是:
1、让学生理解短除法的意思。
2、分解质因数的时候,因数必须是质数。
教学目标
1、使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系、
2、使学生理解提公因式法并能熟练地运用提公因式法分解因式、
3、通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.
教学重点及难点
教学重点:
因式分解的概念及提公因式法、
教学难点:
正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系、
教学过程:
一、复习提问
乘法对加法的分配律、
二、新课
1、新课引入:用类比的方法引入课题、
在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数)、例如,把15分解成3×5,把42分解成2×3×7、
在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法、
2、因式分解的概念:
请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果、(老师按学生所说在黑板写出几个、)
如:m(a+b+c)=ma+mb+mc
2xy(x-2xy+1)=2x2y-4x2y2+2xy
(a+b)(a-b)=a2-b2
(a+b)(m+n)=am+an+bm+bn
(x-5)(2-x)=-x2+7x-10 等等、
再请学生观察它们有什么共同的特点?
特点:左边,整式×整式;右边,是多项式、
可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解、
定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式、
如:因式分解:ma+mb+mc=m(a+b+c)、
整式乘法...
查看详情>>因式分解教案汇总13篇
一、案例背景
现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习用心性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。
因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
二、案例分析
教学过程设计
(一)『情境引入』
情境一:如何计算375×2。8+375×4。9+375×2。3你是怎样想的
问题:为什么375×2。8+375×4。9+375×2。3能够写成375×(2。4+4。9+2。3)依据是什么
【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。
(2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。
情境二:分析比较
把单项式乘多项式的乘法法则
a(b+c+d)=ab+ac+ad①
反过来,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎样认识①式和②式之间的关系的
(2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗
【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。
(2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。
(二)『探究因式分解』
1、认识公因式
(1)、【概念1】:多项式ab+ac+ad的各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。
(2)、议一议
下列多项式的各项是否有公因式如果有,试找出公因式。
①多项式a2b+ab2的公因式是ab,……公因式是字母;
②多项式3x2—3y的公因式是3,……公因式是数字系数;
③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。
分析并猜想
确定一个多项式的公因式时,要从和两方面,分别进行思考。
①如何确定公因式的数字系数
②如何确定公因式的字母字母的指数怎样定
练一练:写出下列多项式各项的公因式
(1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。
(2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。
(3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。
2、认...
查看详情>>搜索更多内容
推荐栏目
热门标签