教学内容:
分解质因数
教学目标:
1、使学生了解每一个合数,都可以写成几个质数相乘的形式
2、掌握质因数和分解质因数的概念,学会用短除法分解质因数。
教学过程:
一、复习
学生回答质数的概念,并举例说明
二、引入新课
1、教学例2
把合数10、24和63分别用质因数相乘的形式表示出来。
10=2×5
24=2×2×2×3
63=3×3×7
(1)一个合数可以用几个质数相乘的形式表示
(2)一个合数可以写成几个质数相乘的形式
(3)把合数写成质数相乘的形式叫做分解质因数。
2、区别几个概念
(1)质数,因数,质因数,分解质因数
(2)分解质因数,是把一个合数用质因数相乘的形式表示出来,
(3)质因数要求因数本身必须是质数。
3、教学例3
把15、42、60分解质因数
(1)用短除法分解质因数
(2)什么是短除法
(3)练习
(4)注意:用短除法分解质因数,除数一定要用质数,看被除数能被哪个质数,整除,就用这个质数去除,直到得出的商是质数为止。
三、巩固练习
1、练一练
四、总结归纳,布置作业
教学反思:
我认为这节课最重要的的是:
1、让学生理解短除法的意思。
2、分解质因数的时候,因数必须是质数。
教学目标
1、使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系、
2、使学生理解提公因式法并能熟练地运用提公因式法分解因式、
3、通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.
教学重点及难点
教学重点:
因式分解的概念及提公因式法、
教学难点:
正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系、
教学过程:
一、复习提问
乘法对加法的分配律、
二、新课
1、新课引入:用类比的方法引入课题、
在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数)、例如,把15分解成3×5,把42分解成2×3×7、
在第七章我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法、
2、因式分解的概念:
请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果、(老师按学生所说在黑板写出几个、)
如:m(a+b+c)=ma+mb+mc
2xy(x-2xy+1)=2x2y-4x2y2+2xy
(a+b)(a-b)=a2-b2
(a+b)(m+n)=am+an+bm+bn
(x-5)(2-x)=-x2+7x-10 等等、
再请学生观察它们有什么共同的特点?
特点:左边,整式×整式;右边,是多项式、
可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解、
定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式、
如:因式分解:ma+mb+mc=m(a+b+c)、
整式乘法:m(a+b+c)=ma+mb+mc、
让学生说出因式分解与整式乘法的联系与区别、
联系:同样是由几个相同的整式组成的等式、
区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法、两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式、
例1 下列各式从左到右哪些是因式分解?(投影)
(1)x2-x=x(x-1) (√)
(2)a(a-b)=a2-ab (×)
(3)(a+3)(a-3)=a2-9 (×)
(4)a2-2a+1=a(a-2)+1 (×)
(5)x2-4x+4=(x-2)2 (√)
下面我们学习几种常见的因式分解方法、
3、提公因式法:
我们看多项式:ma+mb+mc
请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式、
注意:公因式是各项都含有的公共的因式、
又如:a是多项式a2-a各项的公因式、
ab是多项式5a2b-ab2各项的公因式、
2mn是多项式4m2np-2mn2q各项的公因式、
根据乘法的分配律,可得
m(a+b+c)=ma+mb+mc,
逆变形,便得到多项式ma+mb+mc的因式分解形式
ma+mb+mc=m(a+b+c)、
这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式 ma+mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法、
定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多 项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法、
显然,由定义可知,提公因式法的关键是如何正确地寻找公因式、让学生观察上面的公因式的特点,找出确定公因式的.万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:
(1)ax+ay+a (a)
(2)3mx-6mx2 (3mx)
(3)4a2+10ah (2a)
(4)x2y+xy2 (xy)
(5)12xyz-9x2y2 (3xy)
例3 把8a3b2-12ab3c分解因式、
分析:分两步:第一步,找出公因式;第二步,提公因式、
先引导学生按确定公因式的方法找出多项式的公因式4ab2、
解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc)、
说明:
(1)应特别强调确定公因式的两个条件以免漏取、
(2)开始讲提公因式法时,最好把公因式单独写出、①以显提醒;③强调提公因式;③强调因式分解、
例4 把3x2-6xy+x 分解因式、
分析:先引导学生找出公因式x,强调多项式中x=x·1、
解:3x2-6xy+x
=x·3x-x·6y+x·1
=x(3x-6y+1)、
说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因、还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项、
课堂练习:(投影)
把下列各式分解因式:
(l)2πR+2πr;
(2)
(3)3x3+6x2;
(4)21a2+7a;
(5)15a2+25ab2;
(6)x2y+xy2-xy、
例5 把-4m3+16m2-26m分解因式、
分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提"-"号时,注意添括号法则、
解:-4m3+16m2-26m
=-(4m3-16m2+26m)
=-2m(2m2-8m+13)、
说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式、
课堂练习:(投影)
把下列各式分解因式:
(1)-15ax-20a;
(2)-25x8+125x16;
(3)-a3b2+a2b3;
(4)-x3y3-x2y2-xy;
(5)-3ma3+6ma2-12ma;
(6)
三、小结
1、因式分解的意义及其概念、
2、因式分解与整式乘法的联系与区别、
3、公因式及提公因式法、
4、提公因式法因式分解中应注意的问题、
四、作业
教材 P、10中 1、2、3、4、
五、板书设计
因式分解不言而喻,就整个数学而言,它是打开整个代数宝库的一把钥匙。就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下的作用。
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法。因此,我们应该重点阐述教法。一节课不能是单一的教法,教无定法。但遵循的原则——启发性原则是永恒的。在教师的启发下,让学生成为行为主体。正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”。在上述思想为出发点,就本节课而言,不妨利用对比教学,让学生体验因式分解的必要性;利用类比教学,以概念的形曾成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。 不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感创造和谐的课堂氛围,这是最重要的。
教学准备
教学目标
知识与能力
1.了解多项式公因式的意义,初步会用提公因式法分解因式;
2.通过找公因式,培养观察能力.
过程与方法
1.了解因式分解的概念,以及因式分解与整式乘法的关系;
2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.
情感态度与价值观
1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;
2.培养观察、联想能力,进一步了解换元的思想方法;
教学重难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来.
难点: 识别多项式的公因式.
教学过程
一、 新课导入
请同学们想一想?993-99能被100整除吗?
解法一:993-99=970299-99
=970200
解法二:993-99=99(992-1)
=99(99+1)(99-1)
=100×99×98
=970200
(1)已知:x=5,a-b=3,求ax2-bx2的值.
(2)已知:a=101,b=99,求a2-b2的值.
你能说说算得快的原因吗?
解:(1) ax2-bx2=x2(a-b)
=25×3=75.
(2) a2-b2=(a+b)(a-b)
=(101+99)(101-99)
=400
二、新知探究
1、做一做:
计算下列各式:
①3x(x-2)= __3x2-6x
②m(a+b+c)= ma+mb+mc
③(m+4)(m-4)= m2-16
④(x-2)2= x2-4x+4
⑤a(a+1)(a-1)= a3-a
根据左面的算式填空:
①3x2-6x=(_3x__)(_x-2__)
②ma+mb+mc=(_m_)(a+b+c_)
③m2-16=(_m+4)(m-4_)
④x2-4x+4=(x-2)2
⑤a3-a=(a)(a+1)(a-1)
左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?
总结: 把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
整式乘法 因式分解与整式乘法是互逆过程 因式分解
在am+bm=m(a+b)中,m叫做多项式各项的公因式.
公因式:
即每个单项式都含有的相同的因式.
提公因式法:
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.
确定公因式的方法:
(1)公因式的系数是多项式各项系数的最大公约数;
(2)字母取多项式各项中都含有的相同的字母;
(3)相同字母的指数取各项中最小的一个,即最低次幂.
三、例题分析
例1 把12a4b3+16a2b3c2分解因式.
解:12a4b3+16a2b3c2
=4a2b3·3a2+ 4a2b3 ·4c2
= 4a2b3 (3a2 + 4c2)
提公因式后,另一个因式:
①项数应与原多项式的项数一样;
②不再含有公因式.
例2 把2ac(b+2c)- (b+2c)分解因式.
解:2ac(b+2c) -(b+2c)
= (b+2c)(2ac-1)
公因式可以是数字、字母,也可以是单项式,还可以是多项式.
例3 把-x3+x2-x分解因式.
解:原式=-(x3-x2+x)
=-x(x2-x+1)
多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的`每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).
四、当堂训练
1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.
(2)5x2-25x的公因式为 5x .
(3)-2ab2+4a2b3的公因式为-2ab2.
(4)多项式x2-1与(x-1)2的公因式是x-1.
2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2
课后小结
1.分解因式
把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.
2.确定公因式的方法
一看系数 二看字母 三看指数
3.提公因式法分解因式步骤(分两步)
第一步 找出公因式;
第二步 提公因式.
4.用提公因式法分解因式应注意的问题
(1)公因式要提尽;
(2)某一项全部提出时,这一项除以公因
式时的商是1,这个1不能漏掉;
(3)多项式的首项取正号.
板书
一、因式分解
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
二、提公因式法
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.
am+bm=m(a+b)
二、例题分析
例1、
例2、
例3、
三、当堂训练
因式分解是第九章的重难点,公式法是多项式因式中应用最广泛的方法之一,课本中主要介绍了平方差公式和完全平方公式,虽然应用的公式只有平方差公式和完全平方公式,但要灵活应用于解题却不容易,所以我决定一个公式一节课。
在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做两个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的两个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的平方差公式——两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。
本节课主要存在以下几个问题:1灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9(m+n)2-(m-n)2化成(3(m+n))2-(m-n)2然后应用平方差公式这样的题目却无从下手。2因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。
教学目的:
1.使学生理解质因数和分解质因数的含义,初步掌握分解质因数的方法。
2.通过实际的动手操作,掌握质因数的含义和分解质因数的方法。
3.培养学生的观察能力、分析能力。
教学重点:
使学生理解质因数和分解质因数的含义,初步掌握分解质因数的方法。
教学难点:
使学生理解质因数和分解质因数的含义,初步掌握分解质因数的方法。
教学过程:
一、教学用短除法分解质因数。
教师:上节课我们学习了一步一步地分解质因数,这样分解起来比较麻烦,为了简便,通常我们用短除法来分解质因数。
教师向学生说明短除法是笔算除法竖式的简化,并以6和28为例向学生具体介绍短除法的书写方法,被除数写在哪里,除数写在哪里,商又写在哪里?然后重点问学生用什么作除数?为什么要用这个数作除数。如:
教师:用哪个数去除28呢?
学生:根据分解质因数的意义,应该用质数去除。
教师:用哪个质数呢?
学生:用2和7都可以。但是最好先用2作除数,因为28的个位数是8,一眼就能看出能被2整除。
教师:对!用短除法分解质因数时,通常先用一个最小的能整除这个合数的质数去除。师板书:2| 2 8 14
教师:除完了吗?(没有)为什么?(因为商14还能被2整除)那就再商2。(师板书略)这次的商7还除不除?(不除了)为什么?
启发学生说出因为7是质数,达到了分解质因数的目的。或者说7除了1和它本身外,没有其它约数了。这时再指导学生把各个除数和最后的商写成连乘的形式。
教师:谁能把用短除法分解质因数的方法归纳一下?
引导学生归纳出:写出短除式──用能整除这个合数的最小质数去除──商如果是合数,照上面的方法除下去,直到商是质数止──把除数和最后的商写成连乘的形式。
教师:用这个方法把24、56分解质因数。
学生解答后,集体订正。
二、巩固练习
指导学生阅读第62页下面的你知道吗?并让学生说一说读后知道了什么。
三、课堂小结
师生共同小结以下内容:
1.这节课学习了什么内容?
2.怎样用短除法分解质因数?
3.你还知道些什么?
教学目标
(1)使学生了解每一个合数,都可以写成几个素数相乘的形式。
(2)掌握质因数和分解质因数的概念,学会用短除法分解质因数。
教学重点、难点
重点:掌握质因数和分解质因数的概念。
难点:
教具、学具准备
教学过程
备注
一、复习准备
1、什么叫做素数?什么叫做合数?各举例说明。
2、20以内的素数有哪几个?为什么”1“既不是素数又不是合数?
二、教学新识
1、教学例2
(1)10是由哪几个素数相乘得到的?
(2)教学归纳:10是由2和5两个素数乘得到的,板书:10=2×5
(3)同时出示24和63的分解图。提问:“4和6”是素数吗?谁能继续分解,在□内填上素数?(指两名学生分别板演)那么,怎样把24和63分别写成几个素数相乘的形式呢?
学生答后板书:24=2×2×2×3;63=3×3×7
(4)把以上3个合数,分别写成了几个素数相乘的形成,是不是每一个合数都可以写成几个相乘的形式呢?再举例说明。
(5):从以上的合数可以看出,每个合数都可以写成几个素数相乘的形式。出示:“一个合数可以写成几个素数相乘的形式,其中一个素数都叫做这个合数的()。把一个合数用质因数相乘的形式表示出来,叫做()。”引导学生看书作答。(板书:“质因数”、“分解质因数”并举例例2说明)
2、练一练
(1)P44第1题,同桌讨论后口答反馈,并说出打x的理由。教师:“2和5,都是素数,但不能叫质因数。因为2和5都是10、20......这些合数的素数,离开这些合数,就不能孤立地叫质因数。4和5都是20的因数,但4和5不都是20的质因数。”
(2)P45第2题,提问:“把下面各数分解质因数”是什么意思?学生答后独立作业在书上之后再评讲。
如果:“51=1×51”对吗?为什么?
“42=3×14”对吗?为什么?
我们已经懂得了什么叫做分解质因数。我们通常用短除法来分解质因
教学过程
备注
数,如何用短除法进行分解呢?
3、教学例3。
(1)15可用哪几种素数相乘的形式来表示?
教师说:“用短除法来分解,先用一个能整除15的素数3除。(板书:3),用3去除得出的商是几?(板书:5),商5是素数还是合数?得出的商是素数,就不要再除下去了,就把除数和商写成相乘的形式。板书:15=3×5。这就是用短除法把15分解质因数。
(2)”42“怎样用短除法进行分解呢?学生答后,教师强调先用一个最小的能整除这个合数的素数去除,板书。
商21是素数还是合数?商21是合数还不是素数怎么办”(继续分解?照上面的方法,继续除下去。)第二次除时,把21当被除数,除数应该是几?为什么?(除数必须整除这个合数的素数,其中最小,通常用3作除数。)学生答后,板书。
商7是素数还是合数?商7已经是素数,短除到此为止。问:合数42,怎样用质因数相乘的形式表示?板书:42=2×3×7
(3)学生试练:用短除法把60分解质因数。练后,让学生与书中对照,统计正确率。把学生中的错误写在黑板上,讨论错在哪里?为什么?
(4)学生看书上概括用短除法分解质因数的结语。要求分清三层意思,划出没层中的关键词语。
三、巩固练习
1、用短除法分解质因数。
365475123
2、不用短除法,分解质因数。
(1)口答:
6=21=22=12=
(2)共同练习:
25=66=16=91=
3、课内作业:书上P45第4题。
四、教学
通过这节课的学习,你懂得了什么?学会了什么?
五、作业《作业本》
对于分解质因数的形式,学生较易掌握,但在实际分解过程中,往往分解得不彻底,最后的因数不都是质数。强调质因数既是质数又是因数。
课后反思:
在教学“分解质因数”这一课时,反馈阶段“把24分解质因数”,我请做得快的同学上黑板板书,板书情况如下:书写非常端正工整,答题步骤及答案无可挑剔。集体订正时,我表扬了这位同学做题迅速、正确、工整,同时也委婉的指出,今后书写时最好按从左到右的顺序写。这时,一个同学突然举手,我让他说说有什么问题,他大声说:“老师,我不同意你的看法,我认为从右往左写是一种创新,你不是经常要我们多创新,常创新吗?”我怔了一下,然后微笑着肯定了他敢于发表自己不同的见解及自己的想法,同时引导大家来讨论,这算不算是一种创新?许多同学都踊跃的发表自己的看法。
一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。
老师提示:
1.用分解因式法的条件是:方程左边易于分解,而右边等于零;
2.关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.
发布时间:2024-04-23
因式分解教案 篇1 一、案例背景 现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习用心性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。 ...
今天好工具范文网为大家献上了一篇有关“分解因式课件”的深度剖析。教案课件是老师在课堂上非常重要的课件,因此就需要我们老师写好属于自己教学课件。教案是教学理念的具体体现。希望我们的建议能够为您提供更多的思路和方法!...
你会发现这个“分解和组合教案”相当有用。在开始正式上课之前,老师们需要准备好本学期的教学教案和课件,每位老师都要仔细地规划教案和制作课件。教案是教学流程的规范化展示。我建议你将这个页面收藏起来,以备将来需要时使用!...
发布时间:2024-10-07
作为一名教师,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的小学健康教育教案(精选8篇),仅供参考,欢迎大家阅读。健康走步教案 篇1 一、指导思想 本课将坚持“健康第一”的指导思想,践行“苦...
发布时间:2024-04-12
作为教育工作者,经常需要做教案准备工作。教案是指导教学活动的基础,具有至关重要的作用。那么,如何撰写教案呢?下面是小编整理的五年级数学上册掷一掷教案,希望对大家有所帮助。掷一掷的教案 篇1 活动目标: 1、知道不断调整自己与他人合作能获得成功。 2、探索、学习“两人三足”的走法,锻炼下肢力量,...
发布时间:2023-12-14
老师在新授课程时,一般会准备教案课件,不过教案课件里知识点要设计好。 学生反应可以反映教师对课程安排的条理性和合理性,一个好的教案课件应该是怎样的?好工具范文网小编为您特意收集整理了“大班数学7的分解与组成教案反思”,欢迎您收藏我们的网站与我们一起探索更多的未知领域!...
发布时间:2024-09-29
作为一名认真负责的教师,我们需要进行周密的教学设计,把教学内容、方法等各要素作为一个系统来综合考虑,分析问题和需求,明确解决方案,以确保教学效果最佳化。教学设计应该怎么写才好呢?以下是小编精心整理的初中数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。初中数学教案优秀教案设计模板 篇1 教...
发布时间:2024-05-23
近年来,各学校推进“八礼四仪”主题教育活动,着力提升学生的文明礼仪素养,那么,以下是CN人才公文网小编给大家整理收集的“八礼四仪”小学主题班会教案,供大家阅读参考。八礼四仪的教案 篇1 为了培养我们青少年的核心价值观,江苏省开展了八礼四仪的活动,...