【#实用文# #初中数学教学设计方案范例#】作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写才好呢?以下是好工具范文网小编精心整理的初中数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的.意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
教学目标
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
教学重点和难点
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
教学过程
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的.值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y??2的图象。x2的图象是曲线型的,且分成两支。对此,学生第一次接触有一定的难度,因此需x2的图象。x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象。__
22探索活动3反比例函数y??与y?的图象有什么共同特征?__(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征。(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x
<title> 从不同方向看</title>
教学目标
1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。
2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。
3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。
教学重难点
重点:频率与机会的关系。
难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。
教学过程
一、提出问题
上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。
实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?
下面让我们看另一类问题:
一枚图钉被抛起后钉尖触地的机会有多大?
二、分组实验
1.两个学生一个小组,一人抛掷,一人记录
每个小组抛掷40次,记录出现钉尖触地的频数
教师负责把各小组的结果登录在黑板上
2.然后把每小组的结果合起来,分别计算抛掷80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出现钉尖触地的频数及频率
3.列出统计表,绘制折线图
4.根据实验结果估计一下钉尖触地的机会是百分之几?
5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的统计表和折线图。这与你实验的结果相同吗?为什么?
三、深入思考
如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?
能把两个小组的实验数据合起来进行实验吗?
四、概括小结
从上面的问题可以看出:
1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的.。比如,以同样的方式抛掷同一种图钉。
2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。
五、用心观察
我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?
观察课本第105页表15.2.1和图15.2.2 。
当实验进行到多少次以后,所得频率值就趋于平稳了?
( 小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。 )
六、巩固练习
课本第107页练习第1 、 2题。
七、课堂小结
这节课你有什么收获?还有哪些问题需要老师帮你解决的?
注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。
八、布置作业
1 、课本第108页习题15.2第2题
2 、课本第106页做一做
2 、数字之积为奇数与偶数的机会
摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。
关键词:相切;环节说明;分层体现;
一、案例背景介绍
(一)教学环境
在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。
(二)学生情况
我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。
(三)教材情况
本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。
二、案例内容设计及说明
环节一:复习引入
通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切
环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。
环节二:新知探究
活动
1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。
环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。
活动
2、将判定的题设和结论互换后的探究。
环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。
环节三:巩固和应用
通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。
环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。
环节四:课堂小结
在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。
环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。
环节五:拓展练习
通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。
环节六:作业布置
通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。
环节说明:作业
1、重点面向学困生考察其掌握基础的程度。作业
2、针对待优生夯实基础的基础上,提高其运用能力。作业
3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。
三、案例分析与反思
实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。
一、教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、课堂教学过程设计
(一)从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题。
例1某数的3倍减2等于某数与4的和,求某数。
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3。
答:某数为3。
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4。
解之,得x=3。
答:某数为3。
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,
所以x=50000。
答:原来有50000千克面粉。
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:
(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿。
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5。
其苹果数为3×5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得)
(三)课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。
(四)师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆。
(五)作业
1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。
一、教学目标:
1、理解二元一次方程及二元一次方程的解的概念;
2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;
3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;
4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
二、教学重点、难点:
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学方法与教学手段:
通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
四、教学过程:
1、情景导入:
新闻链接:x70岁以上老人可领取生活补助。
得到方程:80a+150b=902880、
2、新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。
做一做:
(1)根据题意列出方程:
①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:
(2)课本P80练习2、判定哪些式子是二元一次方程方程。
合作学习:
活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
并提出注意二元一次方程解的书写方法。
3、合作学习:
给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换、(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法、提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?
出示例题:已知二元一次方程x+2y=8。
(1)用关于y的代数式表示x;
(2)用关于x的代数式表示y;
(3)求当x=2,0,—3时,对应的y的值,并写出方程x+2y=8的三个解。
(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)
4、课堂练习:
(1)已知:5xm—2yn=4是二元一次方程,则m+n=;
(2)二元一次方程2x—y=3中,方程可变形为y=当x=2时,y=;
5、你能解决吗?
小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角、小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案。
6、课堂小结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);
(2)二元一次方程解的不定性和相关性;
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
7、布置作业:
一、教学目标
1.通过案例理解正比例函数,能列出正比例函数关系式
2.教会学生应用正比例函数解决生活实际问题的能力
二、教学重点
理解正比例函数的概念
三、教学难点
利用正比例函数解决生活实际问题
四、教学过程
【提出问题】
1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了千米,耗费了他150天时间。
(1)阿甘大约平均每天跑步多少千米?
(3)阿甘一个月(30天)的行程是多少千米?
【生】列算式回答
【师】点评总结
2.写出下列变量间的函数表达式
(1)正方形的周长l和半径r之间的关系【进一步抽象问题让学生思考】
(2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?
(3)下列函数关系式有什么共同点?(小组合作)【分析共同点和不同点,找出规律】
(1)y=200x(2) l=2∏r(3) m=
【生回答,师点评】
【引入新课】
1、正比例函数的概念:一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】
2 、【例题讲解】
例1在同一坐标系里,画出下列函数的图像:y==x y=3x
解:【略】 【掌握函数图像的画法:列表,描点,连线】
3、练习
(1)已知正比例函数y=kx.当x=3时y=6 。求k的值
(2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本?
五、课外作业
【反思】
由于函数的.概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。
【教学目标】
1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。
2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。
3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。
【教学重点与教学难点】
1、重点:多边形的内角和公式。
2、难点:多边形内角和的推导。
3、关键:多边形"分割"为三角形。
【教具准备】
三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________。外角和等于____________
(2)长方形的内角和等于_____,正方形的'内角和等于__________。
2、探索四边形的内角和:
(1)学生思考,同学讨论交流。
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180°+180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。
180°×4-360°=360°
3、探索多边形内角和的问题,提出阶梯式的问题:
你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)
你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:
n边形3456……n分成三角形的个数1234……n—2内角和……
4、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
4、第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1、多边形内角和公式。
2、多边形内角和计算是通过转化为三角形。
六、作业练习
1、书面作业:
2、课外练习:
课题:12.3等腰三角形(第一课时)
教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时
任课教师:东湾中学李晓伟
设计理念:
教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。
㈡教学内容的分析
本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。
在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
二、目标及其解析
㈠教学目标:
知识技能:
1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;
3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。
数学思考:
1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;
2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.
解决问题:
1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;
2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.
情感态度:
1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;
2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;
3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.
㈡教学重点:
等腰三角形的性质及应用。
㈢教学难点:
等腰三角形性质的证明。
㈣解析
本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;
2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;
3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。
三、问题诊断分析
1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。
2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。
3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计
课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
四、教法、学法:
教法:
常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。
本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。
学法:
学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。
五、教学支持条件分析
在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。
六、教学基本流程
七、教学过程设计
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的'值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
全文阅读已结束,如果需要下载本文请点击
发布时间:2024-09-17
作为一位无私奉献的人民教师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?以下是小编为大家收集的初中生体育教案(通用13篇),欢迎阅读,希望大家能够喜欢。初中体育教案全套设计方案 篇1 一、 说指导思想 新课程的核心理念是以...
发布时间:2023-10-20
在方案中,必须明确行动的思路和计划,以确保工作的顺利进行。为了制定对应的方案,我们应该如何进行呢?今天我们为大家整理了一篇关于“绿化设计方案”的文章,您可以通过鼠标右击来收藏本网页链接!...
发布时间:2024-06-28
为保证事情或工作高起点、高质量、高水平开展,常常需要预先制定方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。那么我们该怎么去写方案呢?以下是小编收集整理的宴会策划方案,仅供参考,大家一起来看看吧。宴会设计方案 篇1 地点: xxx 活动内容: 领导致辞: 抽奖...
发布时间:2023-06-20
有效的工作安排需要保持既定目标的稳定性,这是成功的关键所在。根据目标制定方案可以提高工作效率,这在日常生活中也很有用。如果你对“设计方案”感到好奇,那么这篇文章一定适合你。请继续关注我们的网站,获取更多信息!...
发布时间:2024-03-05
我们费尽心思制作的“优秀设计方案”绝对能够让您满意,如果你觉得这份干货非常有价值请不要吝啬你的分享让更多人受益。有变化才需要做计划,有了计划才知道有问题,当你的梦想无法完成时。我们要做的是写好一份工作方案,如果想要找到合适的工作方式,不妨建立一份好的方案。...
发布时间:2023-12-12
为贯彻落实市委全面深化改革精神,秉承“三社互动”理念,按照《xxxx市社区公益创投活动管理办法》(xxx民发〔xxxx〕xxxx号)要求,支持和鼓励公益性社会组织发展,形成多元主体共同参与的社区治理格局,现就做好xxxx年社区公益创投活动制定如下方案。一、项目范围xxxx年度支持社区公益创投项目主要...
发布时间:2024-07-03
为了确保事情或工作得以顺利进行,就常常需要事先准备方案,方案是阐明具体行动的时间,地点,目的,预期效果,预算及方法等的企划案。写方案需要注意哪些格式呢?以下是小编收集整理的路灯管理维护方案,欢迎阅读,希望大家能够喜欢。路灯设计方案 篇1 一、集中供热存在的问题 1.供热系统不能适时有效地调节...
发布时间:2023-12-14
“只含有一级运算的四则运算”学习活动设计方案学习目标:1使学生理解和掌握加减、乘除的顺序,并能正确计算。2让学生体验探索和交流解决实际问题的过程,感受一些解决问题的策略和方法。三。培养学生认真检查、独立思考、积极参与的学习习惯。学习重难点:整理统计运算的顺序;准确计算混合式题。学习准备:两步混合...