范文网
好工具> 范文 >实用文 >

代数式课件15篇

代数式课件

格式:DOC上传日期:2024-03-21

代数式课件15篇

2024-03-21 10:21:10

代数式课件 篇1

知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。

教学目标:

1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。

4 了解电子计算器使用基本过程。会用电子计算器进行四则运算。

教学重难点:

1. 考查近似数、有效数字、科学计算法;

2. 考查实数的运算;

3. 计算器的使用。

同号两数相加,取原来的符号,并把绝对值相加;

异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;

任何数与零相加等于原数。

两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即

(6)开方 如果x2=a且x≥0,那么=x; 如果x3=a,那么

在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.

(3)乘法交换律 ab=ba.

其中a、b、c表示任意实数.运用运算律有时可使运算简便.

代数式课件 篇2

下面看几个用字母表示数的例子:

1. 如果甲数为x,乙数为y,那么甲、乙两数的差是多少?

2. 如果长方形的长各宽分别为a和b,那么它的周长和面积各是多少?

长方形的面积是a·b。

3. 如果梯形的上底为a,下底为b,高为h,那么它的面积是多少?

现在我们来分析上面四个公式有哪些共同的特征。

(1)这些式子中,都含有数字或表示数字的字母;(2)它们都是用运算符号连接起来的。

实际上,用运算符号把数或表示数的字母连接而成的式子,就是代数式。

单独的一个数或一个字母,也是代数式,如5,a,m等都是代数式。

说明:

(1)这里的运算是指加、减、乘、除、乘方、开方(可以提出“开方”这个词,以后要学)。

(2)强调代数式仅指用“运算”符号连接数或字母而得到的算式,代数式中不含有等号或不等号。如S=ab是等式,也可表示长方形面积公式。它不是代数式,而ab是代数式。

练习:举出五个含有加、减、乘、除、乘方运算的代数式(每一个代数式至少含有两种运算)。

(3)代数式里的每个字母都表示数,因此数的一些运算规律也适用于代数式。

例1 指出下列代数式的意义:

(1)2a+5; (2)2(a+5); (3) ;

分析:说出代数式的意义就是要求写出代数式的读法,一个代数式可以有几种读数,写出一种即可。

(2)2(a+5)表示的是a与5的和的2倍.

(3) 表示的是a的平方与b的平方的和.

(4) 表示的是a,b两数和的平方.

(5) 表示的是x的倒数.

注意:解这类问题的关键是:(1)认真分析代数式中含有哪些运算,它们运算顺序是什么,从而正确,简明地体现出代数式的运算顺序,(2)不会引起误解;(3)为了简明地叙述代数式的意义,也可以找出最后的运算,把它用语言表达出来,其它的运算用代数式表示。如(7) 的意义可叙述为a+b与a-b的商,(8)3(x2-y2)可叙述为3与x2-y2的积。

代数式课件 篇3

教学目标 

1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议

1.重点和难点:正确地求出。

2.理解:

(1)一个是由代数式中字母的取值而决定的。所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化。因此在谈时,必须指明在什么条件下。如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

3.求的一般步骤:

在的概念中,实际也指明了求的方法。即一是代入,二是计算。求时,一要弄清楚运算符号,二要注意运算顺序。在计算时,要注意按代数式指明的运算进行。

4。求时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法。

6.教学建议

(1) 是由代数式里的字母所取的值决定的,因此在教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。

(2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

教学设计示例

(一)

教学目标 

1使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学重点和难点

重点和难点:正确地求出

课堂教学过程 设计

一、从学生原有的认识结构提出问题

1用代数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%

2用语言叙述代数式2n+10的意义

3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

二、师生共同研究的意义

1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做

2结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

当教师引导学生说出:“是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70

注意:如果代数式中省略乘号,代入后需添上乘号

例2  根据下面a,b的值,求代数式a2- 的值

(1)a=4,b=12,(2)a=1 ,b=1

解:(1)当a=4,b=12时,

a2- =42- =16-3=13;

(2)当a=1 ,b=1时,

a2- =- =

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1(1)当x=2时,求代数式x2-1的值;

(2)当x=,y=时,求代数式x(x-y)的值

2当a=,b=时,求下列:

(1)(a+b)2;   (2)(a-b)2

3当x=5,y=3时,求代数式 的值

答案:1.(1)3;  (2) ;  2.(1) ;(2) ; 3. .

四、师生共同小结

首先,请学生回答下面问题:

1本节课学习了哪些内容?

2求应分哪几步?

3在“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的。

五、作业

当a=2,b=1,c=3时,求下列:

(1)c-(c-a)(c-b);   (2) .

(二)

教学目标 

1.使学生掌握的概念,会求;

2.培养学生准确地运算能力,并适当地渗透对应的思想。

教学重点和难点

重点:当字母取具体数字时,对应的的求法及正确地书写格式。

难点:正确地求出。

课堂教学过程 设计

一、从学生原有的认识结构提出问题

1.用代数式表示:(投影)

(1)a与b的和的平方;(2) a,b两数的平方和;

(3)a与b的和的50%.

2.用语言叙述代数式2n+10的意义。

3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值。这就是本节课我们将要学习研究的内容。

二、师生共同研究的意义

1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做。

2.结合上述例题,提出如下几个问题:

(1)求代数式2n+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

当教师引导学生说出:“是由代数式

里字母的取值的确定而确定的”之后,可用图示帮助

学生加深印象。

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应。

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案。(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值。

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70.

注意:如果代数式中省略乘号,代入后需添上乘号。

解:(1)当a=4,b=12时,

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数。

最后,请学生总结出求代数值的步骤:

①代入数值  ②计算结果

三、课堂练习

1.(1)当x=2时,求代数式x2-1的值;

2.填表:(投影)

(1)(a+b)2;  (2)(a-b)2.

四、师生共同小结

首先,请学生回答下面问题:

1.本节课学习了哪些内容?2.求应分哪几步?

3.在“代入”这一步应注意什么?

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的。

五、作业

1.当a=2,b=1,c=3时,求下列:

2.填表

3.填表

课堂教学设计说明

由于是由代数式里的字母所取的值决定的,因此在设计教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。

读书破万卷下笔如有神,以上就是一米范文范文为大家带来的7篇《数学教案-代数式的值》,希望对您的写作有所帮助,更多范文样本、模板格式尽在一米范文范文。

代数式课件 篇4

第一章实数与中考

1.正确理解实数的有关概念;

2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;

3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。

5.会用多种方法进行实数的大小比较。

中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。

牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。

大纲要求:

1.使学生复习巩固有理数、实数的有关概念.

2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:

1.有理数、无理数、实数、非负数概念;

2.相反数、倒数、数的绝对值概念;

3.在已知中,以非负数a2、|a|、(a≥0)之和为零作为条件,解决有关问题。

(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数,

实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).

从数轴上看,互为相反数的两个数所对应的点关于原点对称.

实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.

例1①a的相反数是-,则a的倒数是_.

③(泉州市)去年泉州市林业用地面积约为1000亩,用科学记数法表示为约_.

【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.

例2.(-2)3与-23.

例3.-的绝对值是;-3的倒数是;的平方根是.

分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。

例4.下列各组数中,互为相反数的是()D A.-3与B.|-3|与一C.|-3|与D.-3与

例1下列实数、sin60°、、()0、3.14159、-、(-)-2、中无理数有()个

【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.

代数式课件 篇5

教学目标:

1、使学生更深地理解用字母表示数的意义和方法,发展学生抽象概括能力。

2、通过对简易方程的整理和复习,学生之间相互质疑,相互辩论,相互评价,完成知识结构。

3、加强数学和学生生活实际的联系,创设互相协作积极向上的学习情境,培养学生创新意识和全员参与的意识。

教学重点:通过整理交流总结、梳理综合练习,找准知识间的联系与区别,完成知识结构,形成知识网络。

教学过程:一、用字母表示数。

创设情境激发兴趣。

1、师生共同游戏:师先出数,请学生举起和老师相同的数,如:师出比a多3的数,学生举a+3。

使学生观察出手中数的特点。并试着用字母表示一些我们学过的知识。

通过学生评价,相互补充后理出:在书写含有字母的式子时,应注意什么?

2、计对性练习。

(1)判断正误:①a8简写成()②a3和3a表示的意义相同③258的号可以省略不写。(

)④ab可以写成ab也可以写成ab()⑤54.5可以写成a4.5。

(2)用含有字母的式子表示下面数量关系。

①练习本每本a元,买6本要用元。

②用a表示单位,x表y数量,c表示总价,那么c=,a=,x=。

3、想一想:用字母表示数有什么好处?学生讨论得出,用字母表示数除了简明易记,还便于应用。

二、简易方程。

小组探究,共同参与。

1、通过学生自己举例,出示方程、学生之间,组与组之间,师生之间,相互提问,相互质疑,相互辩论,相互评价,完成知识结构。

如:概括方程这部分的知识,提出问题考考大家。通过学生自己提问,自己解答,从而复习和区别一些易混淆的内容。

2、反馈练习。

(1)解方程:3x+81/2=131/2x-25%x=10

(2)在练习过程中,学生之间相互启发,回忆得出解方程的依据。

(3)列方程解应用题。

出示:一个数的1/2比这个数的25%多10,这个数是多少?

三、归纳概括,形成网络图。

今天,我们整理和复习了用字母表示数和简易方程,谈谈这节课们最大的收获是什么?

四、综合练习、拓展应用:

1、口答填空:

(1)比m的3倍多5的数是(2)8.4与m的和的4倍是

(3)一个两位数、十位上数字是a、个位上数字是b、这个数是。

计算:(1)a=17b=8c=4求(a+b-c)*3的值是多少?

(2)5x=36-4x(3)x+63/4=11.5

五、布置作业:总复习P42第15题、第16题、第17题。

板书设计

运算定理

整用字母表示数计算公式

理数量关系

和方程

复简易方程方程的解

习解方程

代数式课件 篇6

代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。

教学目标:

1、 了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;

2、 理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;

3、 掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;

4、 能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;

5、 掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。

1.代数式的有关概念. (1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.

求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析

把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列

把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,

给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.

所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷. 要会判断给出的项是否同类项,知道同类项可以合并.即 其中的X可以代表单项式中的字母部分,代表其他式子。 3.整式的运算 (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是: (i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.

(ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.

(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.

多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

遇到特殊形式的多项式乘法,还可以直接算:

单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。

单项式的乘方要用到幂的乘方性质与积的乘方性质:

(1)考查列代数式的能力。题型多为选择题,如:

(2)考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如:

(A)a3+a3=a6 (B)(3a3)2=6a6 (C)a3·a3=a6 (D)(a3)2=a6

整式的运算,题型多样,常见的填空、选择、化简等都有。

代数式课件 篇7

作为从事数学教育的人,让更多的学生掌握扎实的基础知识与具备较高的数学思维水平与解题能力是每个老师的共同愿望,如何在短时间内达到这一目的是许多老师非常关注的问题。我对初三数学总复习有如下做法:

好的复习计划,对指导师生进行系统复习,具有明显的导向作用,初三数学复习计划的制定应注意:

1.钻研教材,确定复习重点。确定复习重点可从以下几方面考虑:⑴.根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。这是确定复习重点的依据和标准。⑵.熟识每一个知识点在初中数学教材中的地位、作用;⑶.熟悉近年来中考试题类型,以及考试改革的情况。

2.了解学生的知识状况。一是对平时教学中掌握的情况进行定性分析;二是进行摸底测试。

3.制定复习计划。根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。复习计划主要内容应包括系统复习安排和综合复习安排,系统复习初中的每一章节内容,要计划好复习时间、复习重点、基本复习方法;计划好如何挖掘教材,使知识系统化;训练哪些方法培养哪些能力、掌握哪些数学思想等。综合复习应设计如何引导学生对初中数学完成由厚到薄的转变;如何培养学生综合应用知识解决问题的能力;安排如何引导学生对各种数学方法进行训练,使知识系统化、熟练化,形成技能技巧,促进数学能力的提高,使学生形成知识体系。

初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。如何进行基础知识的复习呢?我认为:一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在系统复习中教师要从引导学生弄清知识的结构入手,由结构找性质,由性质找方法,则熟练掌握方法到形成能力。在每一个章节复习中,为了有效地使学生弄清知识的结构,宜先用一定的时间让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上。复习中教师应在学生中巡回辅导,了解信息,及时反馈,然后再引导学生对本章节知识进行系统归类,弄清内部结构,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高,此阶段切忌求快、求深、求难。否则中差生是达不到合格水平的。复习时还注意到知识的纵横联系,将各部分知识串在一起,弄清它们之间的共同性和区别,弄清它们的联系,可使对知识的学习深入一步。因此,复习时除按课本章节顺序进行外,还可将知识按另外的方式进行归类总结。

例题与习题的选用应从学生的实际出发。因此在复习中根据教学的目的、教学重的点和学生实际,要注意引导学生对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。目前,“题海战术” 的普遍现象还存在,学生整天忙于解题,没有时间总结解题规律和方法,这样既增重学生负担,又不能使学生熟练掌握知识灵活运用知识。事实上,许多复习题目是从同一道题中演变过来的,其思维方式和所运用的知识完全相同。如果不掌握它们之间的内在联系,就题论题,那么遇上形式稍为变化的题,便束手无策,教师在讲解中,应该引导学生对有代表性的问题进行灵活变换,使之触类旁通,培养学生的应变能力,提高学生的技能技巧,挖掘教材中的例题、习题功能,可从以下几方面入手:⑴.寻找其它解法;⑵.改变题目形式;⑶.题目的条件和结论互换;⑷.改变题目的条件;⑸.把结论进一步推广与引伸;⑹.串联不同的问题;⑺.类比编题等。

四、注重各种数学思想与数学方法的训练,提高学生的数学素质。

初中数学中已经出现和运用了不少数学思想和方法。如转化的思想是一种重要的思想方法,应通过不同的形式给以训练,使学生熟练掌握,致于分析、综合、归纳等的重要数学思想方法,也让学生有所了解。

初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。

对学生进行数学思想方法和训练可采用以下方法:

1.采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。

2.适当进行题组训练。用一定时间对一方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、牢。

相信在复习过程中,认真抓好每一个环节,最后必定会取得自己满意的好效果,好成绩!

代数式课件 篇8

第二章代数式与中考

1、掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;

2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;

3、熟练运用提公因式法及公式法进行分解因式;

4、了解分式的有关概念式的基本性质;

5、熟练进行分式的加、减、乘、除、乘方的运算和应用。

中考整式的有关知识及整式的四则运算仍然会以填空、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题中去进行考查数与似的应用题将是今后中考的一个热点。分式的概念及性质,运算仍是考查的重点。特别注意分式的应用题,即要熟悉背景材料,又要从实际问题中抽象出数学模型。

掌握整式的有关概念及运算法则,在运算过程中注意运算顺序,掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分时都要注意分解因式知识的应用。化解求殖题,一要注意整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。

代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。

1、了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;

2、理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;

3、掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;

4、能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;

5、掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。

1.代数式的有关概念.

(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.

求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析

把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列

把-个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,

给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.

所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.

要会判断给出的项是否同类项,知道同类项可以合并.即其中的X可以代表单项式中的字母部分,代表其他式子。

(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:

(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.

(ii)合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.

(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.

多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

遇到特殊形式的多项式乘法,还可以直接算:

单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。

单项式的乘方要用到幂的乘方性质与积的乘方性质:

例1、(日照市)已知-1(A)a+b(B)a-b(C)a+b2(D)a2+b

评析:本题一改将数值代人求值的面貌,要求学生有良好的数感。选(B)

例1若单项式2am+2nbn-2m+2与a5b7是同类项,求nm的值.

例2(05宝应)一套住房的平面图如右图所示,其中卫生间、厨房的面积和是

评析:本题是一道数形结合题,考查了平面图形的面积的计算、合并同类项等知识,同时又隐含着对代数式的理解。选(B)

例1(1)am・an=_(m,n都是正整数);

(2)am÷an=_(a≠0,m,n都是正整数,且m n),特别地:a0=1(a≠0),a-p=(a≠0,p是正整数);

(3)(am)n=_(m,n都是正整数);(4)(ab)n=_(n是正整数)

(5)平方差公式:(a+b)(a-b)=_.(6)完全平方公式:(a±b)2=_.

【点评】能够熟练掌握公式进行运算.

例2.下列各式计算正确的是().

(A)(a5)2=a7(B)2x-2=(c)4a3・2a2=8a6(D)a8÷a2=a6

A.a2a3=a6 B.(-a+2b)2=(a-2b)2 c.(a+b≠O)D.

A.;B.(-2x)3=-2x3;

C.(a-b)(-a+b)=-a2-2ab-b2;

D.

评析:本题意在考查学生幂的运算法则、整式的乘法、二次根式的运算等的掌握情况。选(D)

(江苏省)先化简,再求值:

[(x-y)2+(x+y)(x-y)]÷2x其中x=3,y=-1.5.

【点评】本例题主要考查整式的综合运算,学生认真分析题目中的代数式结构,灵活运用公式,才能使运算简便准确.

代数式课件 篇9

1、使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

2、经历求代数式的值的过程,进一步理解字母表示数的意义,感受代数式求值的转化思想。

3、培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

(3)a与b的和的50%、

2、用语言叙述代数式2n+10的意义?

3、对于第2题中的代数式2n+10,可否编成一道实际问题呢、(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个、若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的`值是40;当n=20时,代数式的值是50、我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值、这就是本节课我们将要学习研究的内容?

1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?

2、结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?

(3)求代数式的值可以分为几步呢、在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案、(教师板书例题时,应注意格式规范化)

例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

=70、

例2 根据下面a,b的值,求代数式a2-b2 的值?

(1)a=4,b=12,(2)a=1 ,b=1、

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

1、(1)当x=2时,求代数式x2-1的值;

2、当a=-1,b=2 时,求下列代数式的值:

(1)(a+b)2; (2)(a-b)2、

3、当x=5,y=3时,求代数式 xy+2y2的值、

1、本节课学习了哪些内容、

2、求代数式的值应分哪几步、

1、当a=2,b=1,c=3时,求下列代数式的值:

(1)a=-3,b=-2(2)a=-8.b=+2(3)a=3/2,b=0

代数式课件 篇10

教学目标

1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议

1.重点和难点:正确地求出。

2.理解:

(1)一个是由代数式中字母的取值而决定的。所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化。因此在谈时,必须指明在什么条件下。如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

3.求的一般步骤:

在的概念中,实际也指明了求的方法。即一是代入,二是计算。求时,一要弄清楚运算符号,二要注意运算顺序。在计算时,要注意按代数式指明的运算进行。

4。求时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法。

6.教学建议

(1) 是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

(2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

第 1 2 页

代数式课件 篇11

一、说教材:

代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。

二、说目标:

2.1 教学目标

根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:

1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。

2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。

3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通

过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。

2.2 重难点

代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。

教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

三、说教法:

3.1 教法分析

针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的思考机会,便课堂气氛活泼,有新鲜感。

3.2 学法分析

“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。

3.3 教学手段

采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。

四、说设计:

4.1 导入设计

1、创设情境,引入新课(用多媒体展示)

①搭个这样的正方形需要多少根火柴棒?

②每根火柴棒的长为个正方形的面积为,则一个正方形的周长为,两③一个正方形的面积是个正方形面积的

④一个正方形面积为则它的边长为先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。

通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。

2、展示新知:

问:这些式子有什么共同特征?

请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。

书写代数式请注意以下几点:

(1)

(2)通常写为·或(乘号省略) 通常写作 (除号用分数线表示)

不写成 (3)数字写在字母的前面。如

3、应用新知

为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。

(1) 判别

④ 不是代数式; 是代数式; 是代数式; 是代数式。

判别的时候要紧扣定义,定义其实由两部分组成:①用运算符号把数或表示数的字母连结而成的式子叫代数式;②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。

(2)下列式子中符合代数式书写要求的是( )

(A) (B) (C) 千米 (D)·3

(3) 用代数式表示米与厘米的和的式子:

① 厘米 ② 厘米 ③ 米 ④ 厘米, 四个式子中正确的是 ( )

(A) ①② (B)③④ (C)①③ (D)②③

4.4例题教学

例1. 用代数式表示:

(1)的3倍与3 的差; (2)的2 倍与的的和;

(3)与的和的平方; (4)与的平方的和;

(5)与两数平方的和; (6)的立方根.

例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。

例2. 一辆汽车以80千米/小时的速度行驶,从A城到B城需小时。如果该车的行驶速度增加V千米/小时,那么从A城到B城需多少时间?

为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:①这是小学学过的哪类应用题?②行程问题中的三个主要量的关系如何?③一辆汽车以80千米/小时的速度行驶,从A城到B城需小时,则A城到B城总路程是多少千米?④这辆汽车原来的速度为80千米/小时,其速度增加V千米/小时后,该车的速度是多少?⑤在总路程不变的前提下,那么汽车提速后从A城到B城需多少时间?

在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。

代数式课件 篇12

从生活出发的教学让学生感受到学习的快乐 在“代数式”这节课中,由数青蛙引入,带领学生一起探究得出规律,由此引出代数式的概念。在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位学生举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如我们所说的,“代数式在生活中”。然后,着重讲解列代数式,按和,差,积,商,倍,分,半等运算,先出现先列时等原则,分清是先平方,还是先求和差。通过典型问题的讲解与练习,学生掌握的不错。

不足和今后在教学中应注意

1.营造有利于新课程实施的环境氛围。

2.注重新型师生关系的建立,在处理好学生、教师、教材三者的关系上多下功夫,力求建立更为和谐融洽的师生关系,有良好的课堂教学气氛,以取得良好的课堂教学效果。

3.进一步学习新课程改革的教育教学理论,在教师角色转变上多做工作,增强自己是学生学习的促进者、教育教学的研究者、课程的建设者和开发者,向开放型的教师迈进。

4.努力提高自己的业务能力,特别是驾驭堂的能力和教材的能力。探索适合我校学生特点和自己特点的课堂教学模式。

5.不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。

另外,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。

代数式课件 篇13

1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来,数学教案-列代数式。

2.初步培养学生观察、分析和抽象思维的能力。

3. 通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力.

2痹诖数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式北窘诳挝颐蔷屠匆黄鹧习这个问题

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律钡a与b的差指的是(a-b),而b与a的差指的是(b-a)绷秸呙飨圆煌,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3 用代数式表示:

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2庇么数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

3庇么数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)薄

首先,请学生回答:

1痹跹列代数式?2绷写数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备币求学生一定要牢固掌握

1庇么数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2币阎一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

代数式课件 篇14

小学数学与代数教学设计

解决实际问题的公式教学中如何引导学生分析量的等式关系

教学目的:

1.在求解实际问题的过程中,了解和掌握ax+b=c、ax-b=c形式的方程组的求解方法,并列出上述方程组求解两步计算的实际问题。

2.在观察、分析、抽象、概括和交流的过程中,体验将现实问题抽象成方程的过程,进一步体会方程的思维方式和价值。

3.在积极参与数学活动的过程中,养成独立思考、积极与他人合作交流、自觉测试等习惯。

教学难点:让学生经历在实际问题中求量间相等关系和用平行方程求解问题的过程,理解和掌握相关方程的求解方法,加深用平行方程解决实际问题的经验。

教学对策:在理解题意的基础上,组织学生充分交流定量关系分析,对有困难的学生及时辅导。教学准备:教学光盘或幻灯片

教学过程:

1.回顾铺垫

1.根据条件陈述数量之间的等价关系。

红色花朵的数量是黄色花朵的3倍;梨比苹果多4个;红花比黄花少4朵;梨的数量比黄花少4倍,比苹果多2倍。指定学生口头回答,教师及时评价。

2.根据方程的性质,在圆圈内填入运算符号,在方框内填入数字。

(1) x+20=45 (2) x÷5=40 X+20-20=45○□ x÷5○□=40○□

< p> 当学生回答时,他们被要求解释方程的性质是基于什么的。 2. 教学实例1唐少智

代数式课件 篇15

2.本节知识结构:

本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

3.重点、难点分析:

列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.

4.列代数式应注意的问题:

(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的`加,减,乘,除的运算间的关系。

(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

(4)在代数式中出现除法时,用分数线表示。

5.教法建议:

列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

全文阅读已结束,如果需要下载本文请点击

下载此文档
  • w
    列代数式课件汇集十篇

    发布时间:2024-02-01

    在本文中我们将深入探讨“列代数式课件”的各种方面,我们为您提供实用的解决方案敬请参考。教案课件是老师上课做的提前准备,因此想要随便写的话老师们就要注意了。 教学过程中学生是否受到启发可以通过学生反应来体现。...

  • w
    闭幕式主持稿15篇

    发布时间:2023-05-19

    绳锯木断,水滴石穿,主持词可为演出环节间增添更多对话和互动。主持词聚焦活动亮点并有营销作用,hao86好工具编辑浏览“闭幕式主持稿”时感受最佳阅读体验。别忘了收藏并分享给朋友哦!...

  • w
    学校消防课件15篇

    发布时间:2024-04-17

    作为一位教育工作者,撰写教案是至关重要的。通过制定教案,可以更有效地组织教学活动。您是否想了解如何撰写教案呢?接下来,我将为您提供一份消防安全教案的范例,希望对您有所帮助。学校消防课件 篇1  活动目的:  1、认识消防队员,知道他们的工作任务是灭火和预防火灾的发生;了解一些预防火灾的简单知识。  ...

  • w
    芦苇课件(合集15篇)

    发布时间:2024-02-15

    “芦苇课件”所蕴含的问题广泛而复杂,让我们一同来探讨。每位教师在上课时都需要备好教案和课件,因此我们需要静下心来撰写教案和制作课件。如果教师能够编写出高水平的教案和课件,相信课堂教学的氛围将会非常浓厚。我们提供的模板仅供参考,您可以根据需要自行进行修改!...

  • w
    春风课件(实用15篇)

    发布时间:2024-02-03

    教学目标1.理解课文内容,引导学生初步认识春天的特征。2.使学生知道春天是种植的季节,教育学生珍惜春光,创造条件开展种植活动,为班级、学校、祖国做贡献。3.学习本课生字和由生字组成的词。4.指导学生按课文内容填空,背诵课文。5.以春游看到的景物为内容,练习说话。教学重点1.理解课文内容,初步认识春天...

  • w
    离子课件(模板15篇)

    发布时间:2024-01-11

    教案课件是教师教学工作的第一步,同时也是上好课的必要前提,每位教师都应该精心设计自己的教案课件。教案对于教学效果起着极其重要的作用。我为您准备的“离子课件”会尽力满足您的需求,或许本文对您有所帮助,希望您会喜欢!...

  • w
    孔乙己课件(集锦15篇)

    发布时间:2024-02-15

    教案课件的内容是由老师根据事先准备好的教案来编写的。每个老师在上课之前都需要仔细研究教案,制作出相应的课件。只有写好了教案,才能让课堂教学更加完整。一般来说,教案会包含以下几个部分:引入部分、目标与要求、教学过程、课堂练习、巩固与拓展、教学反思等。如果您想要更多地了解“孔乙己课件”请务必一读这篇文章...

  • w
    水果拼盘课件15篇

    发布时间:2024-02-26

    “水果拼盘课件”所涉及的议题颇为广泛且错综复杂,让我们一同深入探讨,期盼通过本文的分享能为您的生活带来一些改善。编写教案和课件是教师工作的重要组成部分,相信老师们都对此并不陌生。学生反馈的准确性反映了教学的专业水准。...

最新文章

复制全文
下载文档