范文网

多边形内角和教案

更新时间:2025-03-16
1

多边形内角和课件(汇编4篇)

多边形内角和教案

在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。那么什么样的教案才是好的呢?下面是小编收集整理的多边形内角和的教案,希望对大家有所帮助。

多边形内角和课件 篇1

一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9, 求 的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1 已知:如图4-11,四边形abcd的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .

求 .

(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的`外角和.

(3)利用每一个外角与其邻补角的关系及四边形...

查看详情>>
2

多边形内角和教案九篇

多边形内角和教案

多边形内角和教案 篇1

教学目标:

1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。

2、让学生学会根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。

教学重点:

探索三角形内角和是180°

教学难点:

探索三角形内角和是180°

设计理念:

通过自主探索、合作交流的方式进行学习

教学准备:

三角尺。

教学步骤:

一、创设情境

激趣导入

请量出自己准备的三角形的三个角的度数

谈话设疑:只要你们说出其中两个角的度数,我能猜出第3个角的度数

师生互动生说师猜

用自己的三角形按要求操作

同桌交流(小组交流)

对照检查(有异议的做好记录)

二、自主探索

获取新知

1、初步感知内角和180°

2、实验验证

自主探索

请观察自己手中的三角板

它们是什么三角形?

屏幕显示同样的三角形,指名指出角

叙述:这三个角是三角形的三个内角。

你知道三角板三个内角的和是多少度吗?

检查学生活动情况,指名说内角和

提问:你发现了什么?

三角尺的三个内角和180°,是不是每个三角形的`内角和都是180°呢?

你打算用什么方法验证呢?

(根据情况适当提示不同的方法)

巡视、指导、了解学生实验情况

组织学生演示、交流

结合实验交流情况,提问:通过多次实验,你们能得出什么结论吗?

板书:三角形的内角和是180°

现在你能像老师那样猜出角度吗?

取出各自的三角板观察

交流(它们都是直角三角形)

互相指三个角

(认识内角,互相交流)

学生计算,同桌交流各自的想法

(两个三角板内角和都是180°)

猜测并交流

同桌讨论

汇报交流

分组合作验证三角形内角和

交流实验方法

互相交流、提示

同桌互相猜角度

三、应用知识

解决问题

1、“试一试”

2、“想想做做”第1题

“想想做做”第2题

“想想做做”第3题

出示“试一试”巡视个别指导

提问:∠3多少度?

你是怎么算的?(适当提问)

请大家量一量,看看与算出的结果是否一样?

提出练习要求

你是怎么算的?

第三题还可以怎么算?为什么?

用两块完全一样的三角形可以拼成一个三角形吗?(学生拼好后选择不同拼法展示)

哪些是拼成的三角形的内角?

这些角分别是多少度?

拼成的三角形的内角和是多少度?

结合学生回答,小结:任何一个三角形的内角和都是180°

提出操作要求

正方形的内角和是多少度?怎么算?

对折后是什么图形?内角分别是多少度?内角和呢?

再对折后图形有什么变化?内角分别是多少度?内角和呢?

两次对折出的三角形什么在变?什么没变?

出示教师用三角尺,与你们的三角尺比一比,谁的三角尺内角和大?

独立完成∠3角度的计算并验证

独立完成交流算法(从180度中依次去减)

观察交流:90°-55°=35°

独立动手实践

交流不同拼法

小组中分别指出拼成的三角形的内角,并且说出它们的角的度数

独立计算,交流:拼成的三角形的内角和还是180°

独立按要求操作并填写

四个内角都是直角,内角和360°

对折后是三角形,三个内角分别是:90°45°45°,内角和是180°

再对折后是三角形,三个内角分别是:9...

查看详情>>