搜索更多内容
平方根的课件范文
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的'公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学目标
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点
平方根的概念和求法
教学难点
非负数平方根的个数问题
教具学具
投影仪
教学方法
讲练结合
(补 标 小 结)
教 学 过 程
( 展 标 施 标 查 标)
教 学 内 容
教师活动
学生活动
一、引入新课
以正方形的面积和边长的关系引入平方根的概念
展标
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm
2、已知一正方形面积为2cm2则它的边长为---------cm
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念——平方根
二、施标
1、平方根的定义:
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)
求一个数的平方根的.平方根的运算叫做开平方
2、平...
查看详情>>与“平方根的课件范文”相关的文章
平方根的课件
一、内容和内容解析
1.内容
无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.
2.内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力.
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成.
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围.
二、目标和目标解析
1.教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.
2.目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围.
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的`结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍.
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求.
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义.
四、教学过程设计
1.梳理旧知,引出新课
问题1 (1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容.
2....
查看详情>>最新平方根课件
平方根 教案
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1 求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
《6.1.2平方根》课堂练习题
2.(绵阳中考)±2是4的(a)
a.平方根 b.相反数
c.绝对值 d.算术平方根
3.下面说法中不正确的是(d)
a.6是36的平方根 b.-6是36的平方根
c.36的平方根是±6 d.36的平方根是6
4.下列说法正确的是(d)
a.任何非负数都有两个平方根
b.一个正数的平方根仍然是正数
c.只有正数才有平方根
d.负数没有平方根
《6.1平方根》课时练习含答案
15. 下面说法正确的是( )
a.4是2的平方根
b.2是4的算术平方根
c.0的算术平方根不存在
d.-1的平方的算术平方根是-1
答案:b
知识点:平方根;算术平方根
解析:
解答:a、4不是2的平方根,故本选项错误;
b、2是4的算术平方根,故本选项正确;
c、0的算术平方根是0,故本选项错误;
d、-1的平方为1,1的算术平方根为1,故本选项错误.
故选b.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
一、 教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培...
查看详情>>与“最新平方根课件”相关的文章