平方根 教案
【知识与技能】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.
2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根.
【过程与方法】
通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.
【情感态度】
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.
【教学重点】
理解算术平方根的概念.
【教学难点】
根据算术平方根的概念正确求出非负数的算术平方根.
一、情境导入,初步认识
教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.
问题1 求出下列各数的平方.
1,0,(-1),-1/3,3,1/2.
问题2下列各数分别是某实数的平方,请求出某实数.
25,0,4,4/25,1/144,-1/4,1.69.
对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.
由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.
22=4,(-2) =4,故平方为4的数为2或-2.
问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?
分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.
《6.1.2平方根》课堂练习题
2.(绵阳中考)±2是4的(A)
A.平方根 B.相反数
C.绝对值 D.算术平方根
3.下面说法中不正确的是(D)
A.6是36的平方根 B.-6是36的平方根
C.36的平方根是±6 D.36的平方根是6
4.下列说法正确的是(D)
A.任何非负数都有两个平方根
B.一个正数的平方根仍然是正数
C.只有正数才有平方根
D.负数没有平方根
《6.1平方根》课时练习含答案
15. 下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误.
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.
一、 教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。
二、 教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析
本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号
(三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
(-3)2= ( ) ( )2 =
3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数 有两个平方根,它们互为相反数;
零 有一个平方根,它是零本身;
(2)0.16的平方根是什么?
(3)0的平方根是什么?
一个正数a有两个平方根,它们互为相反数.
正数a的正的平方根,记作“ ”
正数a的负的平方根,记作“ ”
这两个平方根合在一起记作“ ”
如果X2=a,那么X= ,其中符号“ ”读作根号,a叫做被开方数
1、判断下面的说法是否正确:
以国庆盛典,阅兵方队导入,以近期热点激发学生学习兴趣。以方队的面积 225平方米,求方队边长为切入点。以2平方米的正方形画布,求其边长为悬念。再设置“想一想”如果一个数的平方等于9,求这个数。用一些可感知具体数学事例引出平方根的定义,使概念变得浅显易懂。也渗透了由特殊到一般,由具体到抽象的数学方法。
设置的数学活动有“接龙”,“判断正误”,“学生板演展示”和“填空”等。活动形式丰富。在这一块里,吴老师设置的两个填空题我觉得相当精彩:
1、 2的平方根是 ?
2、一正方形画布的面积为2,求画布边长。
两道题学生都不假思索异口同声的回答到± 。此时吴老师不是立刻给予纠正,而是给学生以自我反思的时间和空间,使学生得出正确的答案。吴老师顺利的链接到算术平方根的概念,可谓设计之巧妙,独具用心。
在重难点的突破上,老师也做了精心设计。在学生初步形成知识的基础上,吴老师对学生已形成的知识进一步梳理。吴老师是这样设置这一环节的:
1、 请区别:± 、 分别表示什么?然后辅以2、解释: 这一可感知的具体例子。从抽象到具体的加以梳理,使得学生由“混沌”状态进入“澄明”状态。这一环节不但使重难点得到突破,而且可以说是课堂大总结。一箭双雕。
不过有一点值得探讨的是,在学生“接龙”活动中,很顺畅。学生提及的都是可直接开方的数,如4,9,16等。我就在想为什么没有学生提出7,8,5这样的无法直接开方的.数呢?这些数的平方根是多少呢?为什么没有学生发出创造性和跨越性提问呢?是不是我们的教学设计约束了学生的开放思维呢?而这种提问和思维正是我们教学过程中苦苦追寻的东西。
总的说来老师教态明朗,快活,庄重;教学语言富有感染力,板书工整,设计科学;这节课为学生创设了宽松,和谐的学习环境;关注了学生学习过程,让学生有体验数学的机会,学生学习积极主动。师生,生生互动有效;学生自我监控和反思能力得到提高并获得了积极的情感。是一堂自然生成的、常态下的好课。
最新优质课初中数学平方根教案设计5篇
数学能够促进世界科学的发展,数学教育对我们具有重要的作用。作为一名数学老师,不妨写一篇数学教案和我们分享吧。你是否在找正准备撰写“优质课初中数学平方根教案设计”,下面小编收集了相关的素材,供大家写文参考!
优质课初中数学平方根教案设计1
教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温 从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
优质课初中数学平方根教案设计2
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教具准备:
课件、平行四边形纸片、剪刀、直尺、三角板等。
学具准备:
2块平行四边形彩色纸片、三角板、直尺、剪刀
教学过程:
师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)
一、情境创设,揭示课题
1、创设故事情境
同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?
2、复习旧知,揭示课题
(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)
(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。
二、自主探究,操作交流
1、大胆猜想
师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?
师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?
(两个图形的面积相等,都是18平方米……) (知识点)
师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?
(师出示一个平行四边形纸板,生看图猜测。)
生汇报猜测结果,师随机板书。
师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?
2、操作验证
提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.
(师参与到小组活动中,巡视指导。)
3、汇报交流
师:你是怎样做的呢?谁愿意上来演示并说一说呢?
(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)
师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。
师:请同学们观察一下,哪种图形的面积我们懂得计算呢?
生:长方形。
师:怎样剪才能拼成长方形呢?
师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!
生再次操作。
4、发现方法
师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。
(电脑显示思考题)
小组讨论交流。
(1)平行四边形转化成长方形,面积变了吗?
(2)方形后的长和宽分别与平行四边形的底和高有什么关系?
(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?
实物图片展示拼剪过程同时回答上面的讨论题。
学生一边说教师一边板书:长方形面积=长×宽
平行四边形面积=底×高 (知识点)(能力点)
5、回顾公式推导过程
(1)结合课件演示各部分间的相等关系。
(2)指名说说平行四边形面积公式是怎么样推导出来的?
6、学习用字母表示公式。
师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)
7、记忆公式
闭上眼睛记记公式。
如果要求平行四边形的面积,必需要知道哪些条件呢?
8、尝试运用
师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?
(出示喜羊羊的草地图)(说明格式要求)学生独立完成。
三、深化运用,加深理解
通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”
1、算出下列平行四边形的面积 (考查点)
课件出示图形
(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)
2、选一选。(题目见课件) (考查点、能力点)
(强调:平行四边形的面积=底×底边对应的高)
你有什么结论?(等底等高的两个平行四边形面积相等。)
3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)
(考查点、能力点)
有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?
四、解决问题,应用拓展
1、小小设计师
羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?
2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?
五、总结全课,提高认识
这节课我们学习了什么知识?是怎么来学会这些知识的?
优质课初中数学平方根教案设计3
一、 教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。
二、 教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析
本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号
(三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
优质课初中数学平方根教案设计4
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
优质课初中数学平方根教案设计5
总体说明:
完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
初中数学教育方案相关文章:
平方根美术教案
引言:
美术教育在培养学生创造力和审美能力方面起着至关重要的作用。然而,美术教育常常被认为是与科学和数学无关的学科。然而,我们可以通过引入创新的美术教案,将数学与美术相结合,为学生提供一个全新的学习体验。在这篇文章中,我们将详细介绍一个名为“平方根美术教案”的教学方法,以帮助学生更好地理解和应用平方根概念。
第一部分:理论基础
在介绍平方根美术教案之前,我们先简要了解一下平方根的概念。平方根是指一个数的平方等于给定数的操作。数学上,我们用符号√来表示平方根。平方根常常在代数方程、几何图形和实际问题中出现。它是数学中的重要概念之一。
第二部分:平方根美术教案的设计和目标
平方根美术教案将平方根的概念与美术相结合,旨在通过视觉和创作的方式帮助学生更好地理解和应用平方根。这种教案的设计目标包括:
1. 激发学生对平方根概念的兴趣;
2. 培养学生的创造力和想象力;
3. 探索平方根在美术作品中的应用。
第三部分:具体教案内容
下面是平方根美术教案的主要内容:
1. 理论知识讲解:首先,教师将对平方根的概念进行简要讲解,并解释它在数学中的应用。教师可以通过图表、实例等方式生动地介绍平方根的概念。
2. 艺术创作实践:在理论知识的基础上,学生将参与艺术作品的创作过程。教师可以引导学生使用平方根的概念来设计几何图形或艺术作品。例如,学生可以使用平方根来设计一个拼贴画,将不同大小的正方形剪切拼贴在画布上,以创建一个有几何感的艺术作品。通过实际操作,学生将深入了解平方根概念的应用。
3. 展示和分享:在学生完成作品的过程中,教师可以组织一次展示和分享活动。学生可以向同学们展示他们的艺术作品,并讲解他们如何使用平方根的概念来创作作品。这样的活动将增强学生对平方根概念的理解,并培养他们的表达能力。
第四部分:教学效果和评估
平方根美术教案将通过以下方式评估教学效果:
1. 学生参与度:教师可以观察学生在课堂上的积极参与程度,包括问题的提问和回答,作品的创作和展示等。
2. 作品评估:教师可以评估学生的艺术作品,并对作品的创作过程和与平方根概念的结合程度进行评估。
3. 学生反馈:教师可以收集学生对教学内容和方法的反馈,以提供改进和进一步发展的依据。
结论:
平方根美术教案为学生提供了一个创新的学习方式,将数学与美术相结合,帮助学生更好地理解和应用平方根概念。通过这样的教学方法,学生不仅能够在实践中加深对平方根的理解,还能培养他们的创造力和想象力。因此,平方根美术教案值得在教学实践中推广和应用。
平方根美术教案:探索数学与艺术融合的奇妙魅力
引言:
数学和艺术,在看似迥然不同的领域中,却都蕴含着无限的美感和智慧。然而,将这两者相结合,你是否能够想象出一种全新的学习方式和视觉盛宴呢?本篇文章将为您详细介绍一种独特的教学方法——平方根美术教案,通过对数学概念中的平方根进行深入剖析,激发学生的创造力和想象力,让他们通过艺术表达和呈现复杂的数学概念,实现数学与艺术的完美结合。
一、平方根的概念与特点讲解(200字)
在平方根美术教案中的第一部分,我们将详细讲解平方根的概念和特点。学生们将了解到平方根的基本定义,即一个数的平方根是指与该数相乘后得到该数的数值。我们还将解释平方根的符号表示以及如何求解平方根。通过简洁明了的讲解,学生们将对平方根有更深入的认识与理解。
二、探索平方根的几何意义(300字)
在平方根美术教案的第二部分,我们将引导学生们通过几何视角去认识平方根的概念。通过绘制平方根的图形,并以实际物体为例子进行解释,学生们将更直观地理解平方根的意义。例如,利用纸片和绳子,学生们可以制作出不同边长的正方形,然后根据正方形的面积与边长之间的关系,引导学生们发现平方根的规律。
三、平方根的音乐表达(300字)
平方根美术教案的第三部分,我们将引导学生们尝试用音乐表达平方根的概念。通过将平方根的计算过程与音符进行对应,学生们可以演奏出和谐的平方根乐曲。例如,可以用钢琴的88个键来表示从1到100的平方根,通过不同音符的组合,学生们将能够感受到平方根的特殊规律。
四、用绘画展现数学之美(300字)
在平方根美术教案的第四部分,我们将鼓励学生们用绘画的方式来展现数学之美。他们可以根据平方根的计算公式,用不同的线条和色彩表现出平方根的特点。例如,他们可以用线段的长度和角度来表达正方形的边长与面积之间的关系,用色彩的明暗变化来表现平方根的大小和增长趋势。这样的创作过程,将不仅帮助学生们更好地理解平方根的概念,同时也培养了他们的审美能力和创造力。
五、纸艺创作与平方根(200字)
在平方根美术教案的最后一部分,我们将引导学生们用纸艺创作的方式来探索平方根。他们可以利用剪纸、折纸等形式,将平方根的概念转化为立体艺术作品。通过将平方根的计算公式与纸艺形式相结合,学生们将激发出对平方根的更深入理解,并能通过作品呈现出平方根的奇妙魅力。
结语:
平方根美术教案是一种创新的教学方法,将数学与艺术完美结合,为学生们打开一扇通向无限创造力的大门。通过在课堂上引入艺术元素,学生们将对平方根有更深入的认识,并能够通过绘画、音乐、纸艺等方式来表达和呈现数学的美。这种教学方法不仅丰富了学生们的学习经验,还培养了他们的创造力和想象力,让他们对数学充满了热爱和兴趣。相信通过平方根美术教案的引导,学生们能够在数学和艺术的交汇之处收获到更多的智慧和乐趣。
师:请同学们把准备好的两个正方形拿出来,我们一起来看看这个问题(出示幻灯片)
师:(教师下去参与小组活动,由于学生事先预习了,有的同学按书上的虚线操作成功)
生:(很高兴站起来演示,其他学生也一起比划着)。
师:我也给你们演示一下(课件演示)。那你们知道根号2有多大吗?
师:这是一个近似值,受计算器的位数限制只显示了12位,我们一起来看看下面的方法(教师一边写一边说、一边问)
师:(写完后)根号2是个无限不循环小数,有多大?
师:要注意计算器上显示的是近似值,注意每道题目具体的精确度要求,(对答案)。
生1:好像“被开方数越大,它的算术平方根也越大”。
生2:被开方数的小数点每向右移动两位,它的平方根的小数点就向右移动一位。
生3:我也发现了:被开方数的小数点每或向左移动两位,它的平方根的.小数点就或向左移动一位。
师:同学们观察得非常仔细,表达也很清晰。能直接写出根号30的值吗?
师:这里写的很好,50大于49,根号50大于7, 大于21,结果小明说的不对,小丽不能裁出符合要求的纸片。所以我们不能想当然,数学就要用数字说话。
师:(师生一起小结,学生填在课堂练习上)今天我们收获了什么?
全文阅读已结束,如果需要下载本文请点击
发布时间:2023-12-13
一、内容和内容解析1.内容无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.2.内容解析无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.用有...
发布时间:2023-11-29
每位教师都离不开教案课件,但教师也要明白教案课件不能随意书写。教案在课堂教学中是不可或缺的一部分。根据您的要求,我们编辑了“平方根教案”。如果您觉得这份资料对您有帮助,请与您的朋友和家人分享一下!...
发布时间:2023-11-05
每个老师上课都要准备教案和课件,所以我们需要冷静下来,认真编写教案和课件。教案是课堂教学的重要组成部分,那么如何才能快速地编写出优质教案和课件呢?编辑为大家收集了关于“公顷平方千米课件”的最新信息,一起来看看吧,希望本文对大家有所启发!...
发布时间:2024-02-13
祝福语把我们最美好的祝愿传达出去,用心传递的祝福将在身边的人心中绽放,你认识的人是不是也经常发送祝福语?今天好工具范文网整理了最新平安祝福,期待这些句子能够改变您对事物的看法!...
发布时间:2023-09-18
哪些恋爱官宣文案更能够让人感到幸福与自信?晓看天色暮看云,行也思君坐也思君,爱情是一种感受到彼此之间的神圣关联。就像秋季里的落叶,带来悲凉的思绪,经过细致思考我选定了平凡的句子来向你推荐,经过阅读这些句子你会有一些新的领悟!...
发布时间:2023-12-11
编辑经过阅读众多文章后,发现“平面实习报告”可谓是一篇精品。行动是知识的起点,而实践是知识的最终巩固。在我们的生活中,报告变得越来越重要。我们越来越多地需要运用适当的图表来呈现报告,这不仅可以报告主要结果,还使得报告更简洁明了。别忘了来看看,也许会有让你惊喜的事情哦!...
发布时间:2024-02-13
祝福是来自心底的思念愿你时刻感受到它的温暖,在生活中我们不断地向朋友寄语祝福。祝福语是为神州山川增添新的辉煌,真挚的祝福如温柔的阳光温暖心间的思绪。祝愿您能解决关于“最新平安祝福”的一切疑惑,衷心感谢您的体谅和体贴!...
发布时间:2023-12-16
“圣诞节,让我们用温暖的心,点燃希望的火焰,一同感受平安和祥和的氛围。”常常会有圣诞老人和圣诞树的出现,在这一天,人们会相互送上圣诞祝福。好工具范文网的编辑在搜寻过程中整理了一些关于平安夜寄语的资料,持续关注本网站,你将获得更多相关信息!...
最新文章
推荐栏目