【#实用文# #小学方程教案#】作为一名辛苦耕耘的教育工作者,就难以避免地要准备教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。一份好的教学设计是什么样子的呢?以下是好工具范文网小编精心整理的五年级《解简易方程》教学设计,欢迎阅读与收藏。
教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。
教学重点:会根据题意列方程。
教学难点:理解方程的含义。
教学过程:
一、教学例1
出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗?
学生在本子上写。
指名回答,板书:50+50=100
含有等号的式子叫等式,它表示等号两边的结果是相等的。
二、教学例2
学生自学
要求:1、学生在书上独立填写,用式子表示天平两边的质量关系。
2、小组同学交流四道算式,最后达成统一认识:
X+50>100 X+50=100
X+50<100 X+X=100
根据学生的回答,教师板书这4道算式。
3、把这4道算式分成两类,可以怎样分,先独立思考后再小组
内交流,要说出理由。
学生可能会这样分:
第一种:
X+50>100 X+50=100
X+50<100 X+X=100
第二种:
X+50>100 X+X=100
X+50<100
X+50=100
引导学生理解第一种分法:
你为什么这样分,说说你的想法。
小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。
指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”
那X+50>100 、X+50<100为什么不是方程呢?
提问:那等式和方程有什么关系呢,在小组里交流。
方程一定是等式,但等式不一定是方程。
三、完成“试一试”、“练一练”
学生独立完成。
集体订正时围绕“含有未知数的等式”进一步理解方程的含义
四、课堂作业:练习一的1、2、3。
板书: 方程的初步认识
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式是方程。
教材简介:
本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。
本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。
单元教学目标:
1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的'情境中用字母表示常见的数量关系。
2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程
3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。
教学建议:
1.关注由具体到一般的抽象概括过程。
2.用好教材资源,适当扩展联系实际的范围。
3.重视良好学习习惯的培养。
课时安排:
1.用字母表示数3课时
2.解简易方程12课时
第一课时:用字母表示数(一)
教学内容:
教材P44-P46例1-例3做一做,练习十第1-3题
教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。
4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。
教学重点:
理解用字母表示数的意义和作用
教学难点:
能正确进行乘号的简写,略写。
教学准备:
投影仪
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调…….
二、新授:
1、学习用字母表示运算定律和性质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示…….”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
减法的性质:a-b-c=a-(b+c)
除法的性质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a×b=b×a(a×b)×c=a×(b×c)
可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)
(a+b)×c=a×c+b×c
可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:
(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
a2表示什么?2a表示什么?
师强调:a表示两个a相乘,读作a的平方。
口答结果:3的平方5的平方6的平方
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×xm×m0.1×0.1a×63×nχ×8a×c
教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题先独立解答后,再集体评议。
教学内容:苏教版四年级(第八册)
教学目标:
(1)使学生理解方程概念,感受方程思想,方程的意义。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
教学过程:
一、创设情景,抽象数学模式。
1.出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)
2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?(说明两边的重量可能有三种不同的关系。)
用式子描述重量之间的相等关系。
3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了?分,请你猜一猜,两队的情况会怎样呢?
4.创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
200+200=40018<2318+?<2318+?>2318+?=23
280>100120<4?25+?=7022y+720=1050
1.学生尝试第一次分类。
可能有几种不同的分法。
(1)看是否是等式。
(2)看是否含有未知数。
……
2.学生尝试第二次分类。
得到四组不同的式子。
3.描述每一组的特征。
4.引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1.演示动态平衡。有等量关系,能用方程表示
2.出示情景(没有等量关系,不能用方程表示。)
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)
3.通过今天这节课,你学到了什么呢?
四、联系实际,应用与拓展。
1.周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行?千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝?元,付出20元,找回2元。
2.情景图。
本届奥运会上,中国台北队获得了?枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3.开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多?(用方程表示)
教学目标
知识与技能
1.初步理解方程的解和解方程的含义。
2.结合图例,理解根据等式的性质解方程的方法并进行检验。
3.掌握解方程的格式和写法。
过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。
情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。
教学重难点
重点:理解方程的解和解方程的含义。
难点:会检验方程的解。
教学工具
多媒体设备
教学过程
教学过程设计
1、复习旧知,迁移导入
(1)在上一节课的学习活动中,我们探究了哪些规律?
学生回顾天平保持平衡的规律及等式保持不变的规律。
(2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。
2、合作探究,获取新知
8.2.1教学教材第67页例1。
(1)课件出示例1。
从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9
学生自己先列出方程,然后指名回答。
【板书:χ+3=9】
如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
(2)出示第67页分析图示,学生观察图示,交流想法。
根据学生的汇报,板书解方程的过程:
(3)为什么方程两边同时减去3,而不是别的数?
引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。
追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。
(4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。
【板书】:
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。
【注意】:在书写的过程中写的都是等式,而不是递等式。
(5)认识、区别方程的解和解方程。
①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。
【板书】:使方程左右两边相等的未知知数的值,叫做方程的解
求方程的解的过程叫做解方程。
②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?
在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。
③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。
8.2.2教学教材第68页例2。
(1)利用等式不变的规律,我们再来解一个方程。
出示例2:解方程3χ=18
怎样才能求到1个χ是多少呢?
观察示意图,互相讨论,指名回答。
在方程两边同时除以3,得到χ=6。
让学生打开书68页,把例2中的解题过程补充完整。
为什么两边同时除以的是3,而不是其它数呢?
两边同时除以3,刚好把左边变成1个χ。
使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。
(2)组织学生动手检验。
(3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?
8.2.3教学教材第68页例3。
(1)出示:解方程20-χ=9
(2)指名学生板演,解出方程20-χ=9的解。
(3)交流归纳解方程的方法。
(4)小结:等式两边加上相同的式子,左右两边仍然相等。
3、深化理解,拓展应用。
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程
(一)导入新课
故事引入:在古代三国的时候,有人送给曹操一头大象,曹操要知道大象的重量,大臣们都不知道怎么办。这时小儿子曹冲却称出了船上石头的重量。你是怎样理解曹冲的方法的?
(板书:大象的体重=石头的重量)
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课
探究一:学习等式性质
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=12 23+x=45
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x – 19 = 2
(2)x - 12.3 = 3.8
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
教学目标:
1、使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
2、初步理解等式的基本性质,能用等式的性质解简易方程。
3、重视良好学习习惯的培养。
教学重点:
1、“方程的解”和“解方程”之间的联系和区别。
2、利用天平平衡的道理会解形如X±a=b的方程,并检验。
教学难点:理解形如X±a=b的方程原理,掌握正确的解方程格式及检验方法。
教学过程:
一、创设情境,回顾旧知
师:今天在上课前我们来玩一个游戏“我说你答”。以保持天平的平衡如“我在天平的右边增加一个橘子”;“我在天平的左边增加一个同样的橘子”;“天平的左边排球数量扩大到原数的2倍变成4个排球”,“天平的右边的皮球数量扩大到原数的2倍,变成8个皮球”…
师:同学们有这么多让天平平衡的方法,能概括一下让天平平衡的方法吗?
二、探究新知,引出课题
1.通过解方程,认识“方程的解”和“解方程”的两个概念。
师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。
学生回答教师板书:100+X=250
师:这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)
师:(指着方程)那你猜一猜这个方程X的值是多少?并说出理由
预设:生1:我有办法,可以用250-100=150,所以X=150.
生2:我有办法,因为100+150=250,所以X=150
师:谁能用天平平衡的道理来解呢?
生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150
师:课件探索验证一下。请看天平,怎样操作才使天平左边只剩X克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
师:是的,XXX同学的想法是正确的,方程左右两边同时减100,(这样方程左边就只剩X)就能得出X=150。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。
师:指着方程100+X=250说:“X=150”是这个方程的解。(板书:方程的解)
100+X=250
100+X-100=250-100
师指着方框说:“刚才我们求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。
师:同时在书写的时候还要注意“=”对齐。
师:你们怎么理解这两个概念的?(课件出示两个概念)
师:谁来说说你想法?
师:“方程的解”和“解方程”的两个解有什么不同?
小结:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演算过程。
2.尝试解X-a=b形的方程。
师:出示X-3=9(板书)
学生尝试,请一人板演
汇报,评价
师:你是怎么想的?
师:是不是这样的,请看屏幕。(请一位学生说,教师用课件演示)
生:天平左右两边同时放上3个方块,使天平左边刚好是X,天平保持平衡。
师:这时天平表示X的值是多少?
师:讨论方程左右两边为什么同时加3?
生:方程左右两边同时加3,使方程左边只有X,方程左右两边相等。
小结:“方程左右两边同时加3,使方程左边只有X,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道X=12一定是这个方程的解呢?
师:对了,验算方法是什么?
自习课本第58页,模仿检验的书写过程
根据学生的回答板书:
验算方程左边=X-3
=12-3
=9
=方程的右边
所以,X=12是方程的解。
小结:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。
三、巩固练习
(1)判断题
A.X=3是方程5X=15的解。()
B.X=2是方程5X=15的解。()
你是怎么想的?
(2)考考你的眼力,能否帮他找到错误所在呢?
X+1.2=4X+2.4=4.6
X+1.2-1.2=4-1.2=4.6-2.4
X=2.8=2.2
小结:解方程首先要写“解”,X每步都不能离,所有的等号要对齐,检验的习惯要牢记。
(3)填空题
X+3.2=4.6X-3.2=4.6
解:X+3.2○()=4.6○()解:X-3.2○()=4.6○()
X=()X=()
(4)解下列方程,带★的要验算
★X+2.8=7.9X-5=28
(5)完成课本59页做一做的第1题的左边一小题写在书上。
追问:x=2.8带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
小结:解含有加法方程的步骤。
三、巩固延伸
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)
解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。
c)求出X的值。
d)验算。
四、全课小结
通过今天的学习,同学们有哪些收获?
教后反思:
前一阶段的教学,我发现孩子们还是比较喜欢学习数学的,特别对方程都有一种与生俱来的好奇心。他们总觉得天平能启发着他们去解决这么神奇的方程,真是非常有趣,学得效果也不错。今天在整节课的教学中,引入有序,思路清晰,环节紧扣。可是学生学习十分被动,课堂可以说是死气沉沉,真的有点不习惯孩子们这样,据我对学生的理解利用天平这样的事物原型来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,学生应该比较感兴趣的,原因在哪儿呢?课后查找原因:
1、通过与学生的谈话发现学生过于紧张。
2、教师缺乏调节课堂气氛手段。今后尽量要注重这方面的调节,兴趣是最好的老师,没有兴趣哪来的教学效果。
从学生作业反馈来看,学生深刻认识到:利用等式的性质解方程,看似麻烦,实则简单,不须思考各部分之间的关系。虽然这样教学学生有兴趣,效果比较理想,不仅一节课内完成了预订的教学任务,而且学生作业质量较高,仅二人书写格式有误。但也存在局限性,如a-x=b和a÷x=b,虽然教材没有要求解这类方程,但试卷和相应的练习有出现,因此,有必要特别利用一些时间给学生补充讲解这类方程解法。
教学目标
知识与能力
结合操作活动进一步理解方程的意义。
过程与方法
会用含有未知数的等式表示等量关系。
情感、态度与价值观
感受方程与现实生活的密切联系,体验数学活动的探索性。
重点、难点
重点
理解方程的意义,会用含有未知数的等式表示等量关系。
难点
理解方程的意义。
教学准备
教师准备:
多媒体
学生准备:
练习本
教学过程
(一)新课导入:复习导入
1.出示:下面式子哪些是方程,并说明理由?
6+x=14
36-7=29
60+23>708+x
x+4<14÷18=3
3x-12
5x+2x=63
2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。
设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。
(二)探究新知:
1.联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)
衣:妈妈带50元钱给我买了一件T恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:X代表T恤的价钱。
生5:我想试“食”。我是这样写的.X+10=15,X代表的是一袋薯条的价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:X-13+18=36,X代表的是车上原有的`人数。
生7:我想说最后一个“住”。102÷3=X,X代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3X=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
2.(出示)结合生活中的事例解释方程。
①+19=54
②X-14=36
③Z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好孩子。
生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。
(三)巩固新知:
1.出示情境图,学生独立完成。说说列出方程的等量关系。
小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首
学生能够列出:小芳背古诗首数-5=小丽背古诗首数
或:小芳背古诗首数-小丽背古诗首数=5
即:x-5=80
或:x-80=5
学生同桌交流,说说自己的想法,然后,全班订正。
2.出示自主练习3。
这是一个结合具体情境理解方程意义的题目。
先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。
设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。
教学内容:教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。
教学目的:使学生理解和初步学会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。
教学重点:会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。
教学难点:看图列方程,解答多步方程。
教具准备:电教平台。
教学过程:
一、导入
1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。
二、新课
1.教学例2。
出示小老鼠的问题:
出示例2。先让学生自己读题,理解题意。
教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?
学生:含有未知数的等式叫做方程。
教师:那么,要列方程就是要列出什么样的式子呢?
学生:列出含有未知数的等式。
教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?
学生:3x+4 = 40。
教师:很好!谁能再说说这个方程表示的数量关系?
学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。
教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?
学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。
这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。
教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。
教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。
2.教学例3。
小猫提出的问题:
教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。
教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 6.5。)
教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。
教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?
学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。
教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。
让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。
教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。
3.课堂练习。
做教科书第109页下面“做一做”中的题目。
先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。
三、巩固练习(小兔子提出的问题)。
1.做练习二十七的第1题第一行的两小题。
先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。
2.做练习二十七的第2题。
教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。
3.做练习二十七的第4题。
让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)
让学生独立做在练习本上,做完以后,集体订正。
四、小结。
出示课题:解简易方程。
教学目标:
1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.
2.领悟到解方程作为运用方程解决实际问题的组成部分.
3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.
4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践.教学重点:正确去括号解方程
教学难点:去括号法则和分配律的正确使用.
教学方法:引导发现
教学设计:
一、引入:
(读教材156页引例)
引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.
学生观看画面:两名同学到商店买饮料的情景.
如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3
教师组织学生讨论.
教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.
①学生研讨并交流各自解决问题的过程.
②学生独立完成“想一想”中的问题(2).
二、出示例题
并引导学生探讨问题的解决方法.
引导学生对自己所列方程的解的实际意义进行解释.
出示随堂练习题,鼓励学生大胆互评.
①独立完成随堂练习.
③四名同学板演.
③纠正板演中的错误并总结注意事项.
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
三、出示例题
教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
四、出示随堂练习题.
①独立完成练习题.
②同桌互相检查.
出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?
①解方程:2(x+3)-5(1-x)=3(x-1)
②解方程:6(x+8)一6=0
①小组间比赛找错误.
②讨论交流各自看法.
③选代表说出错误的原因,并总结解本节所学方程的注意事项.
五、小结
1、做出本节课小结并交流.
2、说出自己的收获.
给予评价:
引导学生做出本节课小结.
七、板书设计
八、教学后记
一、目的要求
使学生会用移项解方程,一元一次方程 利用等式的性质解方程。
二、内容分析
从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。
x=a的形式有如下特点:
(1)没有分母;
(2)没有括号;
(3)未知项在方程的一边,已知项在方程的另一边;
(4)没有同类项;
(5)未知数的系数是1。
在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。
根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。
解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。
用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。
如解方程 7x-2=6x-4
时,用移项可直接得到 7x-6x=4+2。
而用等式性质1,一般要用两次:
(1)两边都减去6x;
(2)两边都加上2。
因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。
三、教学过程
复习提问:
(1)叙述等式的性质。
(2)什么叫做方程的解?什么叫做解方程?
新课讲解:
1.利用等式性质1可以解一些方程。例如,方程 x-7=5
的两边都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的两边都减去6x,就可以得到 7x-6x=-4,
x=-4。
然后问学生如何用等式性质1解下列方程 3x-2=2x+1。
2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。
教学内容
教科书第96~98页的内容,完成练习二十四的第1~5题。
教学目的
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。
教具准备
简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片。
教学过程
一、新课
1.方程的意义。
(1)教学第1个例子。
教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答。
教师:讲台上摆着的是什么仪器?(天平)
它是用来做什么的?(用来称物品的重量的)
怎样用它来称物品的重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量)
教师一边提问,一边根据学生的回答演示如何用天平称物品。
教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等)
教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!
先让学生自由地说一说,根据学生的.发言,教师写出算式:20+30=50
教师:20+30=50是一个什么式子?(等式)对!这是一个等式。
(2)教学第2个例子。
教师改变天平上所放的物品和砝码。
教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!
指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?
教师和学生共同把等式20+?=100改写成20+x=100。
教师:20+x=100是一个什么式子?
学生:这也是一个等式。
教师:对!这也是一个等式。但是,这一个等式与20+30=50有什么不同?
学生:这是一个含有未知数的等式.
教师:左盘中的这个标有“?”的方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?
让学生自由地说一说,教师总结.
教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?
让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等。
教师在20+x=100的右边板书:x=80
(3)教学第3个例子。
教师出示挂图
教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说。
指名让学生说图意。
学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.
教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?
学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元。
教师:谁能根据图意写出一个等式来?
学生:3x=186
教师:想一想,这个等式有什么特点?
学生:这也是一个含有未知数的等式。
教师:当x等于多少时,这个等式中的等号左右两边正好相等?
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
教学重点:理解等式的性质,理解方程的意义。
教学难点:利用等式性质和方程的意义列出方程。
教学准备:课件
教学过程:
一、预习测试
直接写出得数:
5x+4x=8y-y=7x+7x+6x=7a×a=15x+6x=5b+4b-9b=
二、自主学习
1、交流预习作业,指名学生口答
2、出示天平
知道这是什么吗?你长大它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?
3、教学例1,出示例1图。
你会用等式表示天平两边物体的质量关系吗?
50+50=100(板书)
说说你是怎样想的?
(1)指出等式的左边,等式的右边等概念。
(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
3、教学例2,出示例2图
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:
x+50>100X+50<200x+50=150x+x=200
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
4、讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
5、教学试一试
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
指出:像500÷2=x。20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。
三、多层练习
1、完成“练一练”第1题
独立完成判断后说说想法
2、完成“练一练”第2题,第3题
交流所列方程,说说你为什么这样咧?你是怎么想的?
3、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
4、完成练习一第2题
理解题意,说说数量关系式怎样的?
列出方程并交流
5、完成练习一第3题
四、课堂总结
通过学习,你有哪些收获?
五、作业
1、完成《补充习题》
42、每日一题
写出一些方程,并在小组里面交流
六、板书设计
方程
50+50=100x+50>100x+50=150
X+50<200x+x=200
七、预习布置:
八、教学反思
第一单元第二课时等式的性质
教学目标:
1、使学生在具体的情景中的初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”
。会用等式的性质解简单的方程。
2、使学生在观察、分析和交流过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点:会用等式的性质解方程
教学难点:对等式第1个性质的探索过程
教学准备:课件
教学过程:
一、预习测试
下面哪些是等式,哪些是方程?
6+x=1436-7=2960+23≠708+x50÷2=25x+4<14y-28=355y=40
二、自主学习
1、交流预习作业
(1)指名学生回答预习作业
(2)什么是等式?什么是方程?等式和方程有什么联系?
2、教学例3
(1)我们已经认识了等式和方程。今天这节课,将继续学习与等式、方程有关的知识。
(2)取出天平,情景引入(在天平两边各放入一个20克的砝码)天平的两边一样重吗?天平会平衡吗?
你能根据天平两边的砝码质量写一个等式吗?(20=20)
现在的天平是平衡的,如果将天平的左边加上一个10克的砝码,这时天平会怎样?(失去平衡)
要使天平恢复平衡可以怎么办?(在另一边加上一个10克的砝码,或拿走这个10克的砝码)添上一个10克的砝码。
现在天平恢复平衡了,你能在上面这个等式的基础上,再写一个等式表示天平两边物质质量的关系吗?
经过仔细挑选好工具范文网小编认为“分式方程教案”是最具价值的文章。在老师日常工作中,教案课件也是其中一种,老师在写教案课件的时候不能敷衍了事。教案是提高师生互动质量的有效途径。为了不遗漏重要信息建议您将本页收藏!...
为了帮助学生更好地掌握课堂内容,老师需要事先准备好教案。在编写教案和制作课件时,老师还需要投入一些心思。教案是教师日常工作中不可或缺的一部分。我们已经准备好了您所需要的“方程的意义的教案”,希望今天的分享能够给您带来启发!...
发布时间:2024-04-19
作为致力于为他人传道解惑的教育工作者,细致的教案准备是必不可少的。教案是教学活动的总体组织框架和操作指南。那么,如何编写一份合格的教案呢?接下来,我整理了一份五年级数学解方程的教案,供大家参考学习,希望对您的教学工作有所帮助。解方程设计教案 篇1 学习内容:人教版五年级上册P57页 学习目标: ...
在教学工作者实际的教学活动中,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的式与方程教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。式与方程教案 篇1 一、教材分析 【复习...
教学过程中教案课件是基本部分,每天老师都需要写自己的教案课件。 合理的教案和课件是打造精品课的关键。依据您的要求编辑为您准备了一篇涉及“解方程的教案”的文章,仅供参考请您做好自我判断!...
发布时间:2024-09-27
在教学工作者实际的教学活动中,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?下面是小编整理的《方程的意义》教案,欢迎阅读与收藏。方程的意义的教案 篇1 教学要求: 使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤。 教学...
发布时间:2023-12-14
教师们需要在开学前准备好教案和课件。每个教师都要制定自己的教案和课件计划。教案是实现教育现代化的重要工具。我相信我们的“解方程的教案”会是您最好的选择,我们会不断改进我们在该领域的专业服务,为您提供最优质的内容!...
教师都需准备每堂课的教案及课件,每位教师都需认真备齐自己的教案及课件。教案是教学成功的关键。为方便使用,好工具范文网的编辑整理了与“简易方程五年级教案”相关的内容,本网站所述资讯仅供参考,敬请自行核实!...