【#实用文# #高一上册数学知识点归纳总结(14篇)#】好的,我理解您提供的内容是关于高一数学集合知识点的概要。我会按照您的要求,以中文的形式进行整理和回答。 对于高一数学中集合这个知识点,需要掌握的主要内容包括: 1. 集合的概念和表示方法 2. 集合的运算,包括并集、交集、差集和补集等 3. 集合的性质,如交换律、结合律、分配律等 4. 集合之间的关系,如包含关系、相等关系等 5. 利用集合解决实际问题的方法 这些都是高一数学中集合知识点的重点内容。希望这个总结对你复习和理解这部分知识有所帮助。如果还有其他问题,欢迎随时提出。
知识点1
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1、元素的确定性;
2、元素的互异性;
3、元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2、集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分类:
1、有限集含有有限个元素的集合
2、无限集含有无限个元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知识点2
I、定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II、二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV、抛物线的`性质
1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为
P(—b/2a,(4ac—b^2)/4a)
当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
知识点3
1、抛物线是轴对称图形。对称轴为直线
x=—b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2、抛物线有一个顶点P,坐标为
P(—b/2a,(4ac—b’2)/4a)
当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6、抛物线与x轴交点个数
Δ=b’2—4ac>0时,抛物线与x轴有2个交点。
Δ=b’2—4ac=0时,抛物线与x轴有1个交点。
Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)
知识点4
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数。
知识点5
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a>0,a≠1,b>0,n∈R+);
(2) l og a N= ( a>0,a≠1,b>0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆;
(4) a log a N= N ( a>0,a≠1,N>0 );
8. 判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
数学旋转的知识点
旋转的特征:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前后的图形全等。
理解以下几点:
(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
学习数学小窍门
建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
限时训练。
可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高一数学必修1期末考知识点,希望你喜欢。
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.
(4)集合元素的三个特性使集合本身具有了确定性和整体性.
3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法.
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或N+ 整数集Z 有理数集Q 实数集R
关于属于的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上.
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分类:
1.有限集 含有有限个元素的`集合
2.无限集 含有无限个元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.包含关系子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.相等关系(55,且55,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} 元素相同
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
① 任何一个集合是它本身的子集.AA
②真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 AB, BC ,那么 AC
④ 如果AB 同时 BA 那么A=B
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作AB(读作A交B),即AB={x|xA,且xB}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}.
3、交集与并集的性质:AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.
(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
集合集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G。F。P。,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
幂函数
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
1、多面体的结构特征
(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。
2、旋转体的结构特征
(1)圆柱可以由矩形绕一边所在直线旋转一周得到。
(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。
(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。
(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。
3、空间几何体的三视图
空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。
三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。
4、空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,基本步骤是:
(1)画几何体的底面
在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。
(2)画几何体的高
在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导
(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;
(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;
(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:
①求函数yf(x)的定义域;
②求导数f(x);
③解不等式f(x)0,解集在定义域内的不间断区间为增区间;
④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的'单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.
2.求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;
(2)求导数f(x);
(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
(4)检查f(x)的符号并由表格判断极值.
3.求函数的值与最小值:
(1)如果函数f(x)在定义域I内存在x0,使得对任意的x1,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.
4.解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域.
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0.
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.
5.导数在实际生活中的应用:
实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.
1.知识网络图
复数知识点网络图
2.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
(4)复数集中一元二次方程和二项方程的解法.
一、函数的概念与表示
1、映射
映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:
(1)对映射定义的理解。
(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射。
2、函数
构成函数概念的三要素
①定义域;②对应法则;③值域
两个函数是同一个函数的条件:三要素有两个相同
二、函数的解析式与定义域
求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
三、函数的值域
求函数值域的方法:
①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;
②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;
③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;
④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);
⑤单调性法:利用函数的单调性求值域;
⑥图象法:二次函数必画草图求其值域;
⑦利用对号函数
⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数
四.函数的奇偶性
1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇
函数。
2.性质:
①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,
②若函数f(x)的定义域关于原点对称,则f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]
3.奇偶性的判断
①看定义域是否关于原点对称
②看f(x)与f(-x)的关系
五、函数的单调性
1、函数单调性的定义:
2、设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
通过培训,使我明白肩上的责任有多重。作为一位数学教师,我深知要教好这门课,就必须对这门课程的课程标准完全了解。也通过学习,使我越来越感受到这次课改绝对不单单是改变一下教材而已,而是学生学习方式的完全改革,更是我们教师教学方法上的重大改革。因此,这次培训留给我深入的体会与感悟是:
一、教材整体分析
1、内容的调整:由于我们所使用的教材是从三年前就开始的新一轮的教材,不同在内容上的调整,只是在使用中例题有所增加,铺垫,降低了难度,学生易于接受。应用题的提法上也有了一定的改变,从形式上的改变到思路上的引导,重新指点学生理清思路,解答问题。内容同老教材有一定的改变,排版上的调整,安排上的调整,都让我们切实感觉到编者们对我们一线教师的理解。
2、两整合:将联系紧密可以整体呈现的部分课节进行了整合。将零星散乱的倍的问题提了出来,系统的设计为一个单元,更好的使学生体会倍这种数量关系。
3、新增内容:新增加了一些内容,引导学生综合运用所学的有关知识,解决生活中常见的现实问题,增强应用意识,提高实践能力。
二、教材特色
1、新教材由情境图引出问题串为基本的呈现方式,而且情境设计更加注重题材的多样性,努力为学生创设一个轻松、愉快的教学情境,倡导学习课堂的生活化,将课本数学变为生活数学,使课堂成为生活化的数学,营造浓郁的'课堂学习氛围,培养学生的学习兴趣。
2、在课程标准的修订的背景下,更加重视学习目标的整体实现,教材力求从学生的经验出发,体现“从头到尾”思考问题的过程,最终达到基础知识、基本技能、基本思想、基本活动经验并重;发现和提出、分析和解决问题能力共发展,从而促进学生的全面发展。
3、利用相关内容发展学生的空间观念。随着课改的不断深入,教材也在不断地整编。新教材编写特点突出以学生为主体的教学思想,精心设计了教材的实践活动;关注学生数学学习与社会生活的联系,注重学生的情感体验;重新研究知识之间的整合;加强数学学习与学生生活的联系;注重学生“学会学习”能力的培养。
总之,通过新课标新教材的培训学习,更加使我认识到作为一名数学教师要想构建高效课堂,必须改变教师的教育方式,改变传统的教学方式。特级教师吴正宪曾说过:数学教师要带着思想走进课堂,给孩子们留出思想的空间,孩子们的思想才更开放,孩子们的思路才更开阔。一个好老师要专业地读懂教材,要用心地读懂学生,要智慧地读懂课堂,这样的课堂一定会充满活力。
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
一、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N_或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
强调:描述法表示集合应注意集合的代表元素
A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。
例如:
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。
什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。
集合是把人们的直观的或思维中的某些确定的能够区分的.对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。
(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)
全文阅读已结束,如果需要下载本文请点击
发布时间:2024-01-10
一、用9的乘法口诀求商求商方法:想“除数×()=被除数”,再根据乘法口诀计算得商。 二、解决问题求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。混合计算一、混合计算混合运算,先乘除,后加减,有括号的要先算括号里面的,再算括号外面的。只有加、减法或只有乘、除法,都要从左到...
发布时间:2024-03-30
1.毫米:是长度单位和降雨量单位,英文缩写MM。1毫米=0.1厘米;=0.01分米;=0.001米;=0.000001千米2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为:cm.,1厘米=1/100米 。1厘米=10毫米=0.1分米=0.01米=0.00001千米 .3.分米:是长...
发布时间:2024-01-01
关于范文的要求你知道有哪些吗?在职场中,文档处理的质量直接影响着公司业务的运营和发展,在现代社会,人们纷纷意识到范文的重要性,这已经成为一种共识。背诵范文可以提升文字表达技巧,好工具范文网花费了很多时间为您整理了这篇“初一数学知识点总结归纳”,欢迎您再次光临,也请多多关注我们的网站!...
发布时间:2024-01-14
在这篇文章中,我们将从多个角度对“初一数学知识点归纳总结”进行全面分析和探讨。在我们的成长过程中,我们经常接触到大量的文档写作,因此我们可以从优秀的范文中汲取经验。这些范文采用了独特的写作手法,给了我们不同寻常的写作体验。那么,我们是否能够找到一些优秀的范文来作为参考呢?...
发布时间:2023-12-26
可以参考的范文类型有哪些呢?文档可以说是打开世界和人生的一扇窗户,人们逐渐认识到范文在各个领域中的作用。职场范文可以使我们更轻松地完成任务,下面是我们为您整理的“初二数学知识点总结归纳”相关内容,请记得将此链接加入收藏夹以便于下次打开!...
发布时间:2024-04-29
总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它能帮我们理顺知识结构,突出重点,突破难点,不妨让我们认真地完成总结吧。那么你知道总结如何写吗?下面是小编收集整理的高一语文工作总结,欢迎大家分享。高一语文知识点总结归纳 篇...
发布时间:2024-04-08
[year+3:100]高一数学知识点总结(非常全面) 篇1 平面向量 向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 ...
发布时间:2024-04-24
高一数学知识点总结(非常全面) 篇1 本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中...
高一上册数学知识点归纳总结(14篇)
文件夹最新文章
推荐栏目