搜索更多内容
小学解决问题教案热门十四篇
设计说明
1、创设生活情境,激活已有知识经验,为学习新知做好准备。
数学学习中最重要的一部分就是解决现实生活中的问题。因此本设计紧紧围绕购物这一学生熟悉的场景,为学生创设了一个个现实的生活情境,把学生的学习活动同现实生活紧密联系起来,激发学生的好奇心和求知欲,增强学生应用数学的意识。同时激活学生已有的知识经验,并为学生提供了自主探究、主动获取新知的时间和空间,充分让学生通过看、想、说、算等实践活动,感知新知和旧知的内在联系,为学生学习新知做好准备。
2、注重对数量关系的分析,培养解决问题的能力。
例3所反映的数量关系是除法现实模型的拓展,渗透了单价、数量和总价之间的数量关系,需要学生根据除法的意义来解决。因此,本设计在注重引导学生对数量关系进行分析的过程中,把要解决的问题与除法的现实模型结合起来,让学生运用已有的除法知识探究解决问题的方法,加深学生对除法意义的理解,培养学生发现问题、提出问题和解决问题的能力。
课前准备
教师准备 ppt课件
教学过程
⊙创设情境 ,引入新课
1、创设情境,导入新课。
六一儿童节快到了,亮亮想用自己的零花钱给孤儿院的小朋友们买些玩具,可是面对商店里那么多好玩的玩具,亮亮不知道手中的零花钱能买多少个玩具,同学们,你们愿意用这节课学到的知识帮助亮亮解决这个问题吗?(板书课题:解决问题)
2、出示情境图:现在,让我们一起跟着亮亮去商店看一看吧!
⊙合作交流,解决问题
1、观察情境图,理解题意,说一说都知道了什么。
(1)课件出示教材42页情境图,学生观察后,同桌间互相说一说自己获取的数学信息。
(一个玩具熊6元,一个地球仪8元,一个皮球9元,要解决的问题是“56元可以买几个地球仪”)
(2)引导学生思考:要帮助亮亮解决这个问题,需要知道哪些信息?
预设
生:要求出“56元可以买几个地球仪”,就要知道地球仪的价钱,从图中可以看到一个地球仪8元。
2、合作学习,解决问题。
(1)小组合作,讨论解决问题的方法,教师巡视指导。
(2)汇报,集体交流解题思路。
预设
生1:一个地球仪8元,求56元可以买几个地球仪,就是求56元里面有几个8元。这属于平均分问题,应该用除法计算。
生2:列式56÷8,想七八五十六,商是7。56元可以买7个地球仪。
3、初步感受总价、单价和数量之间的关系。
(1)引导学生先组内说一说这个算式所表示的意义,然后集体交流。
预设
生:56元表示买地球仪用的总钱数,8元表示一个地球仪的价钱,7个表示可以买地球仪的个数。这个算式表示用56元买8元一个的地球仪可以买7个。
(2)教师小结。
总钱数我们可以称之为总价,一个地球仪的价钱我们称之为单价,购买了7个地球仪我们称之为数量,因此我们得到这样的数量关系:数量=总价÷单价,单价=总价÷数量,总价=单价×数量。
4、引导学生独立思考,检验结果。
(1)生自由发言,交流检验的过程。
(2)全班交流检验的过程:一个地球仪8...
查看详情>>分数的解决问题教案实用
发现了一些关于“分数的解决问题教案”的好东西,让我们一起来看看吧。作为老师,编写教案和课件是必不可少的任务,如果还没有完成的话,需要注意一下了。教案是加深课程内涵的重要方式。相信这篇文章会成为您的得力助手!
教学目标
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
教学重难点
解答求一个数是另一个数的百分之几的的百分之几的应用题。
教学工具
课件
教学过程
一、复习旧知:
1、某乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
指名学生回答。
2、某乡去年原计划造林12公顷,实际造林14公顷,实际造林比原计划增加了百分之几?
指名学生回答。
二、相互合作,探究问题:
(一)初步感知
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
(二)共同探讨
1、百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”你能举一些我们日常生活中的百分率的例子吗?
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
3、尝试解答例题:
(1)出示课本例1(1)的条件:
例1:六年级有学生160人,已达到《国家体育锻炼标准》的有120人?
(2)学生提出问题,尝试解答
三、运用知识,解决问题:
1、p86的“做一做”第1、2题
2、练习二十的第2题
四、全课总结
1、学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
五、作业:
练习二十的第3、4题。
课后习题
练习二十的第3、4题。
这部分内容,是在学生们学过分数除法的意义和计算法则、分数乘法应用题的基础上进行教学的。这类应用题历来是学生们学习的难点。教材安排仍采用先列方程求解的方法,加强了与求一个数的几分之几是多少的乘法应用题的联系,重点帮助学生们分析题里的数量关系,特别是对单位...
查看详情>>小学解决问题教案
课前准备好课堂所需的教案和课件是非常重要的,每位教师都需要撰写这些资料。精心编制的教学教案可以帮助教师有效地指导学生学习。那么,有哪些值得参考的教案和课件呢?好工具范文网的编辑特别为您准备了“小学解决问题教案”,希望您尝试之后会喜欢。感谢您一直以来对我们的支持,希望您能收藏并关注我们的网站!
教学内容:
教材第69页例3及相关题目。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征;掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思 考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化教育;通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:
掌握计算组合图形面积的方法,并能准确计算。
教学难点:
对组合图形进行分析。
教学准备:
多媒体课件。
教学过程
学生活动(二次备课)
一、情境导入
同学们,图形世界是美丽的、奇妙的,世界因为有了五彩的图案而更加美丽。古时候,由于人们的活动范围小,往往凭自己的直觉认识世界。看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(课件展示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。比如,精美的雕窗、鸟巢和水立方等建筑,这里面也蕴含了很多数学知识。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
课件出示例3中的雕窗图案。
1.观察一下,这两种设计图案有什么联系和区别?每个图案中的圆和正方形有什么关系?都是由正方形和圆组成的,但左边是外方内圆,正方形的边长等于圆的直径;右边是外圆内方,圆的直径等于正方形的对角线的长。
2.理解题意。如果两个圆的半径都是1m,求出正方形和圆之间部分的面积。抽象成我们学过的数学图形就是:思考:怎样求正方形和圆之间部分的面积?先想一想,再同桌交流。左图求的是正方形比圆多的面积,即用正方形的面积减去圆的面积。右图求的是圆比正方形多的面积,即用圆的面积减去正方形的面积。
3.分析解答。知道两圆的半径,就可以求出它们的面积,关键是求正方形的面积。观察图可知,左图正方形的边长等于圆的直径,由此可求面积;右图正方形的边长不知道,不能直接用公式求面积,可以将正方形看成两个底是圆的直径,高是圆的半径的三角形。学生自己计算,集体订正。
4.回顾反思,理解算法。师:如果两个圆的半径是r,结果又是怎样的?结合图形算一算。学生分小组探究、汇报结论。想一想:当r=1时,和前面的结果一致吗?代入看看。
小结:不管圆的大小如何改变,外方的正方形与圆之间的面积都是半径平方的0.86,而内方的正方形与圆之间的面积都是半径平方的1.14倍。
四、巩固练习
完成教材第70页做一做...
查看详情>>解决问题教案十二篇
通过本文的主动采集和整理,编辑将“解决问题教案”呈现给大家。教案和课件是老师需要认真准备的内容,因此老师应该自己认真制作教案和课件。教案是课程教学与实践有机结合的重要组成部分。请您记得收藏此页面以便后续阅读!
教学内容:
课本第91页例4、“试一试”和“练一练”,练习十五第1~3题。
教学目标:
1.使学生在具体情境中理解“求一个数是另一个数的百分之几实际问题的数量关系,掌握这类实际问题的解题思路和解题方法,能正确解决相关的实际问题。
2.使学生经历解决求一个数的百分之几实际问题的过程,进一步积累解决问题的经验,培养分析问题、解决问题的能力,发展数学思维。
3.使学生进一步体会现实生活中的百分数问题,感受探索问题的成功,培养独立思考、主动交流的学习习惯。
教学重点:
解决求一个数是另一个数的百分之几的实际问题。
教学难点:
理解求一个数是另一个数的百分之几实际问题的数量关系。
教学准备:
课件
教学过程:
一、创设情境
1.激活旧知
(1)解答下列问题。(口答)
一根铁丝长6米,一根铜铁丝长8米。
①铁丝长是铜丝的几分之几?
②铜丝的长是铁丝的几分之几?
学生口答,教师板书算式和结果。
提问:解决这类问题用什么方法计算的,是怎样想的?
指出:解决这类问题,可以用除法计算,其中要找准单位“1“的量,单位”1“的数量是除数。
(2)一根铁丝长10米,剪下3米。
剪下的占全长的( ),也就是( )%;
剩下的占全长的( ),也就是( )%;
学生口答。
提问:怎样求剪下的和剩下的各占全长的百分之几?又是怎样得到剪下的和剩下的各占全长的百分之几的?
指出:求出一个数是另一个数的几分之几,在把分数改写成百分之几,就得到一个数是另一个数的百分之几。
2.引入新课
引入:这里问题的结果都有表示一个数是另一个数的几分之几,如果几分之几改写成百分之几,就能表示为一个数是另一个数百分之。这几科我们一起学习求一个数是另一数的百分之几的简单实际问题。
二、尝试交流,探究新知
1.课件出示:让学生说说题中的条件和问题,根据条形比一比三人跑的路程哪个最多或最少。提问:求李芳跑的路程是王红的百分之几,是把那个量看做单位“1“的量?
引导:怎样求李芳跑的路程是王红的百分之几呢?自己想一想,试着做一做。
学生尝试解答,教师巡视。
集体反馈,让学生介绍自己的方法,教师引导理解并板书。
追问:为什么用4÷5来计算?
引导学生说出那两个量在比,应把哪个来那个看做单位“1”。
小结:求李芳跑的路程是王红的百分之几,是班王红跑的路程作为单位“1”,解题方法与就李芳跑的路程是王红的百分之几是一样的,用李芳侧路程除以王红的路程,知识最后的结果是要用百分数表示。
2,教学试一试
提问:怎样求王红跑的路程是林小刚的百分之呢?
学生独立解答,指名板演。
交流:这里是怎样计算出71.4%的?
通过讨论使学生明确,当除不尽时,商要保留三位小数,也就是百分号前面保留一位小数。
3.反...
查看详情>>