【#实用文# #等式课件通用#】身为一位优秀的老师,我们要在教学中快速成长,通过教学反思可以有效提升自己的课堂经验,快来参考教学反思是怎么写的吧!以下是好工具范文网小编为大家整理的等式性质教学反思,希望对大家有所帮助。
最近我上了一节初一新教材的数学公开课:等式和它的性质,在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手、动脑、操作、观察、归纳出等式性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
以下将教学过程作简要回述:
整个教学过程主要分三部分:第一部分是等式的概念,我采用“归纳思维模式”教学,第一阶段:创设情境——请同学们举出几个等式的例子;第二阶段:形成概念——让学生观察这些等式的共同特点,想一想什么叫做等式;第三阶段:应用概念———让学生识别哪些是等式,哪些不是,并说出为什么?第二部分是探索等式的性质,采用体验探究的教学方式,首先由学生两人一组动手实验,要求分别放上砝码使天平保持平衡,并填写实验表;再让学生观看电脑演示的书中71页的实验,提出问题:通过天平实验,要使天平平衡,你觉得应注意什么?你能联想到等式有什么性质?由学生独立思考归纳出等式性质1,然后让学生观看书中71页第二个实验的电脑演示,并引导学生从天平左右两边的数量关系上思考归纳出等式性质2,最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?第三部分是拓展与提高,通过两个填空,揭示等式的对称性和传递性为后面学习一元一次方程和二元一次方程组作好了铺垫。
教学反思:
这是我在片区教学中上的一节数学公开课,经过片区小组的听课、评课活动,给了我很大的启发,也使我在教学中多了些体会和思考:
《等式和它的性质》这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
回顾本节课,我觉得在一些教学设计和教学过程的把握中还存在着一些问题:
1、不能正确的把握操作的时间,没有达到应有的学习效果。作为教师所提出的实验操作的难易程度,应和所给的`讨论时间成正比。难一点的操作问题,应多给点时间,反之则少给点时间。这样既保证了实验的有效性,又不至于浪费时间。但在探索等式性质1中用天平实验的时间过长(用了10分钟),而且总是停留在一个层面上,使活动没有真正起到最初的效果。
2、学中没能注重学生思维多样性的培养。数学教学的探究过程中,对于问题的最终结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样控制了学生思维的发展。如在研究等式性质1的过程,我是步步指导,层层点拔,惟恐有所纰漏,使得学生的思维受到了限制。
3、对于性质1中的“式子”未能做到合理的解释。
4、对于性质的运用,我采用老师问学生答的形式,没有照顾到全体学生的参与。
改进方法:
1、个一小组做完实验后(时间控制在2分钟)可以采取四人活动,让学生自己先去想你从实验中发现了什么,联想到了什么,由组长做好每一个组员的发言记录,通过观察思考、交流讨论体会实验中所能发现问题的多样性,由每组派代表回答,从学生回答中,引导学生归纳等式性质1。这样的合作讨论,能使学生讨论的答案不再统一在教师事先限定的框框中,学生讨论的结果可能会有很多是老师始料不及的,但也可能是精彩独到的。
2、在归纳等式性质1中,对于“式子”的问题可适当做引导。学生虽然没有学过整式,但却可以在第一个屏幕演示——两边同时加上一个三角物体的天平实验中,提出:两边加上的这个物体它的重量我们知道吗?有可能会是多少?对于这个
物体的未知重量我们可以如何表示呢?从而引出把这个未知量当成一个式子看的概念
3、对于等式性质的应用,可让学生在独立思考前提下进行小组活动,这样能使每个学生都能发挥自己的作用,每个学生都有表达和倾听的机会,每个人的价值作用都能显现出来,在这个过程,学优生得到了锻练,而学困生也在互补、互动中学到了知识,促进了发展。
有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。
在教学活动中,我有以下活动觉得比较好的:
建立知识结构,进行新课的引入和知识的迁移。上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况。这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。
前置学习检查的任务明确。数学教学中很为重要的新知识引入在课堂之前的前置学习完成,为此,新知识的形成过程老师就没有办法把握了,这就要求数学教师很好地在前置学习检查方面动脑筋,在“不等式的性质”这堂课上,由同学们交流检查前置学习的情况,提出三条交流任务:不等式的性质是什么?不等式的性质是怎么研究得到的?不等式的性质与等式的性质有什么区别和联系?学生的交流和讨论就有了明确的方向,后面就有了学生很好的回报:性质的回答情况与以往一样比较到位,更有同学回答了不等式的性质是由等式的性质联想得到的,有同学回答了不等式的性质是我们通过由特殊到一般研究得到的(学案中安排了由具体例子到一般规律的总结),在与等式性质区别和比较之后,学生得出“在不等式两边同时乘以或除以一个数时一定要考虑这个数是正数还是负数”这样的注意点。因此学生前置学习是富有成效的,前置学习检查也是前置学习的补充和完善。
课堂设问、提问精心研究。在利用不等式的性质进行不等式的变形时(问题是以填空不等号的形式拟题的),提问:“各小题的结果是什么?怎样由已知的不等式变形得到的?理论依据是什么”,这样设问便于学生研究,便于学生回答;提升学习内容,问题有难度,思考有深度,在学生回答五道判断题对错后,连续追问,有问为什么的,有问反例是什么的,有问成立的'条件是什么的,有问怎样改变结论使命题成立,怎样改变条件试命题成立。提问学生回答问题形式多样,多数情况,学生举手回答,还有依座次回答,点学号回答,同学推荐回答等等,全班学生整堂课处于积极的参与状态。
课堂内容的处理详略得当。利用性质进行不等式的变形是性质的理解和掌握,难度不大,学生口答一挥而就;分类讨论虽是难题,三种情况一经点破,旋即解决;提升判断实是难点,反复讨论,多角度思考,多方位研究,一题多变化,用足力气;用不等式的性质解不等式,变形后的形式要明白、怎样变形要清楚、变形依据要对号、书写格式要规范,同时这又是后面解一元一次不等式的预演,移项法则由此产生,所以,安排了例题老师示范、安排了学生上黑板板演、安排了学生在上面点评。本课全部完成了预设的教学任务,用了八分钟时间进行了很充分的小结。
教师的情绪也比较平淡,没有给学生创设轻松愉快自然的氛围,使得前半部分的课堂有点沉闷,敢于大胆发言的学生也比较少。由此可知:教师进入课堂就要立刻调动自己的情绪,使学生有轻松活泼的感觉,学生才会调动自己的情绪,将注意力集中到教师所传授的知识上,大胆地发表自己的想法。课堂也才会有活力。
从学生的反应来看,这种提出问题让学生先猜测的教学方法,因为平时训练的少,教师突然放手,学生不知所措,不知道如何去思考。学生还习惯于在老师的引导下去掌握新知,巩固新知,然后学会解题。即学生的创新能力的培养还不够,需要加强。
同时也提醒教师在设计问题时要从本班学生的实际情况出发,要有层次,有坡度,使学生的思考有方向,有目标,一步一个台阶,最终达到预期的效果。课堂上教师在发现学生出现愣神时,及时将问题简单清晰化是明智的。这个现象在含加法的方程中也出现过,如:75+x=150,有学生写:75+x-x=150—75,x=75。分析原因在于:教学中的例题,多数是X在运算符号的前面,然后根据等式的'性质使左边只剩下X时,都是左边加几,等式两边就同时减几,学生形成思维定势,只看左边运算符号后面的数,说明学生对等式的性质的理解不透彻,解方程时是“照葫芦画瓢”,并没有真正掌握解方程的方法,学生灵活运用的能力薄弱。
教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础,等式的性质教学反思。然后出示例1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。
你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的基础上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。
按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练习*大出人意料,除了少数成绩较好的学生能按照要求完成外,大部分几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:
一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式,教学反思《等式的性质教学反思》。
二是对为什么要减去3讨论不够,虽然有学生回答上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比如:x-3=6,我们该怎么办呢?学生通过对比讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,若比x多余的就要减去,不足x的就要补足,这样效果肯定好些。
三是备学生环节出现差错,这部分内容应该不难,但学生的`现有基础是确定教学方法的基础,从教学效果看,我明显做的不够。
四是教学内容确定不恰当,本来我是想,上课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的方法的解决。由于我班学生是我本期新接的,对学生了解不够,学生基础参差不齐,而且整体水平较差,因此安排两个例题有难度。
一、教学前后对该知识点的认识和理解
等式的性质是本章的基础,是方程解法时的重要依据。解方程就是用等式的性质来施行一系列的恒等变换。因此,要正确理解和应用等式的性质。在教学过程中,安排学生通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法,这将为后面几节进一步讨论复杂的一元一次方程的解法准备理论依据。
二、教学过程的实施
这节课学生学习的主要内容是等式的二条性质,以及运用这二条性质解一些简单的方程,那么怎么来学习呢?如果直接就给同学们讲等式有这样的二条性质,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了借助生活实际来学习这节课的内容,利用天平来加强对等式性质的`直观理解,这样学生接受起来比较容易,掌握起来也比较的容易。
在新课引入这个环节,我先就利用天平,引出了等式的基本性质,同时还用了具体的数字等式来验证,而且还让学生用等式来表示这些性质,从本质上理解这些等式性质,从几个方面认识来加深学生的印象。然后过渡到等式性质的几个小练习,让学生们练习。在学生的练习中,更加深了学生对等式性质的理解。
在小练习中,学生很容易掌握等式的两边同加或同乘一个数或式子,但是同除一个数时,总忘了这个数不能为0,所以在这里我特意引导学生两边除以一个0时的结果,通过错题来探寻答案,主要考虑到给他们独立思考的空间,由此最终达到教学目的。
通过前面的小练习,学生理解了等式的性质,然后让学生利用等式的性质解方程,有助于引导学生研究方程的解法,在教学过程中,首先让学生明白解方程就是把方程变形为“x=a”的形式。同时在教学中,没有过早地使用“合并同类项”“移项”“系数化为1”等解方程的专门用语,这里就是要突出等式性质,使用等式性质考虑如何解方程。
教学目标:
知识目标:掌握不等式的基本性质.
能力目标:通过不等式基本性质的探索,培养学生观察、猜想、验证的能力.
情感目标:经历不等式基本性质的探索过程,初步体会不等式与等式的异同.
教学重、难点:
1、重点:掌握不等式的基本性质.
2、难点:不等式的基本性质2和3.
教学准备:
教师准备:课件.
教学设计过程:
一、创设情境,探究新知:
1、合作学习
(1)已知a<b和b<c,在数轴上表示如图5-9.
由数轴上a和c的位置关系,你能得出什么结论?你那举几个具体的例子说明吗?
(2)观察:用“”或“”填空,并找一找其中的规律.
①53,5+2____3+2,5-2____3-2;
②–13,-1+2____3+2,-1-3____3-3;
③6>2,6×5____2×5,6×(-5)____2×(-5);
④–23,(-2)×6____3×6,(-2)×(-6)____3×(-6)
会发现:当不等式两边加或减去同一个数时,不等号的方向不变
当不等式的两边同乘同一个正数时,不等号的方向_不变;而乘同一个负数时,不等号的方向改变.
2、归纳
不等式的基本性质1若a<b和b<c,则a<c.
这个性质也叫做不等式的传递性.
不等式的基本性质2不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。
即
如果a>b,那么a+c>b+c,a-c>b-c;
如果a<b,那么a+c<b+c,a-c<b-c.
不等式的基本性质3不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.
即
如果a>b,且c>0,那么ac>bc,>;
如果a>b,且c<0,那么ac<bc,<;
3、做一做P104
4、试一试
(1)若-m5,则m___-5.
(2)如果x/y0那么xy___0.
(3)如果a-1,那么a-b___-1-b.
5、做一做P105
6、讲解例题
已知a<0,试比较2a与a的'大小.
分析比较2a与a的大小,可以利用不等式的基本性质,也可以利用数轴,直接得出2a与a的大小.
二、巩固反思:
1、P106T1、T2“
2、探究活动
比较等式与不等式的基本性质.
例如,等式是否有与不等式的基本性质1类似的传递性?不等式是否有与等式的基本性质类似的移项法则?你可以用列表的方式进行对比.(请与你的伙伴交流)
三、小结:
通过这节课的学习,你有哪些收获?
四、作业:
1、作业题P107
2、预习5.3不等式与不等式组
教学目标:
1.经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
3.能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
教学重难点:
重点:探索不等式的基本性质,并能灵活地掌握和应用.
难点:能根据不等式的基本性质进行化简.
教学过程:
一、复习引入,导入新课
师:我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?
生:记得.
等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 等式的基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. 师:不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证. 设计意图:通过回顾等式的性质,为本节课类比等式的性质去探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,有助于学生建立新旧知识之间的联系,让学生养成梳理知识体系的习惯。
二、情境导入:童言无忌(课件)
三岁的小凯幼儿园回家开始缠着他的爸爸说:“爸爸,你比我大多少岁啊?”爸爸放下手中的报纸笑眯眯的答道:“我比可爱的小凯大25岁呀,怎么了?”小凯高兴地跑开道:“再过25年我就和爸爸一样大唠”。
留下错愕的爸爸沉浸在“百感交集”中…………
设计意图:学生对故事很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
学习必备 欢迎下载
三、新知探究
教师活动:展示课件,请同学们完成填空,并探究规律。
1、用“﹥”或“﹤”填空,并总结其中的规律:
(1) 5>3, 5+2 3+2 , 5-2 3-2 ;
(2)–1<3 , -1+2 3+2 , -1-3 3-3 ;
学生活动:探究规律,交流讨论,解答上述问题,结果:
(1) >、 >(2) < 、 <
根据发现的规律填空:
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向 师生共识:总结出不等式的性质:
板书:不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向不变. 字母表示为: 如果a>b,那么a±c >b±c
解决“童言无忌”的问题
2、继续探究,接着又出示(3)、(4)题:
(3) 6>2, 6×5 2×5 , 6×(-5) 2×(-5) ;
(4) -2<3, (-2)×6 3×6 , (-2)×(-6) 3×(-6)
(方法同上)又得到:
当不等式的两边同乘以一个正数时,不等号的方向不变;
当不等式的两边同乘以一个负数时,不等号的方向改变。
板书:不等式的性质2 不等式的两边乘(或除以)同一个正数,不等号的方向不变. 字母表示为:如果a>b,c>0,那么ac >bc.
3、继续探究,接着又出示(5)、(6)题:
(5) 6>2, 6×(-5)____2×(-5) 6÷ (-5)____2÷ (-5) ;
(6) –2<3, (-2)×(-6)____3×(-6) (-2) ÷(-6)____3÷ (-6)
会发现: 当不等式的两边同乘或同除以同一个负数时,不等号的方向______;
板书:不等式的性质 3 不等式的两边乘(或除以)同一个负数,不等号的方向改变。
字母表示为:如果a>b,c<0,那么ac < bc.
22ll4.用不等式的基本性质解释 的'正确性 4学习必备 欢迎下载
2222llll师: 在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为和,且有存416416在,你能用不等式的基本性质来解释吗?
生: ∵4π<16
22ll2l0 ∴ ,又∵ 416
22ll2l 根据不等式的基本性质2,两边都乘以得 416
设计意图:通过自主探究,对比不等式的变化让学生得出不等式的基本性质.。这样,既教给学生类比,猜想,验证的问题研究方法,又培养了学生善于动手、善于观察、善于思考的学习习惯。通过两道题目的训练提升学生利用不等式基本性质解决问题的能力。并进一步熟悉不等式的基本性质。
5.例题讲解
将下列不等式化成“x>a”或“x<a”的形式:
(1)x-5>-1;
(2)-2x>3;
生:(1)根据不等式的基本性质1,两边都加上5,得
x>-1+5
即x>4;
(2)根据不等式的基本性质3,两边都除以-2,得 3 x<-; 2
说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.
程序说明:教师对题目进行分析,并引导学生题目的处理方法,如何才能将下列不等式化成“x>a”或“x<a”的形式,即“将不等式的转化为左边只含有系数和次数均为1的未知数,右边只含有常数的形式”.
6.合作探究
多媒体课件展示
讨论下列式子的正确与错误.
(1)如果a<b,那么a+c<b+c;
(2)如果a<b,那么a-c<b-c;
(3)如果a<b,那么ac<bc;
ab (4)如果a<b,且c≠0,那么. cc学习
师: 在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.
本题难度较大,请大家全面地加以考虑,并能互相合作交流.
生: (1)正确
∵a<b,在不等式两边都加上c,得
a+c<b+c;
∴结论正确.
同理可知(2)正确.
(3)根据不等式的基本性质2,两边都乘以c,得
ac<bc,所以正确.
ab (4)根据不等式的基本性质2,两边都除以c,得 cc
所以结论错误.
师: 大家同意这位同学的做法吗?
生: 不同意.
师: 能说出理由吗?
生: 在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a<b,两边同时乘以c时,没有指明c的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c=0,则有ac=bc,正是因为c的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac<bc.只指出了其中一种情况,故结论错误.
在(4)中存在同样的问题,虽然c≠0,但不知c是正数还是负数,所以不能决定不等号的方向是否改abab变,若c>0,则有,而他只说出了一种情况,所以结果错误. ,若 c<0,则有cccc师: 通过做这个题,大家能得到什么启示呢?
生: 在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.
师: 非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.
生: 不等式的基本性质有三条,而等式的基本性质有两条.
区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.
联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.
设计意图: 让学生通过尝试练习与交流讨论,加深对性质的理解和运用。题目中的不等式变形中,将同加、减、乘(或除以)具体数字换成了表示数的字母,渗透了分类讨论的数学思想,加大了难度,有助于学生能力的提升,为解不等式作好铺垫.在这个环节的教学过程中,放手让学生展示、说理、点评、争论,充分发挥学生学习的主体作用.程序说明:学生先独立练习,再小组交流、指导、检查,最后小组选派代表展示,其他小组进行点评、补充、质疑.
四、训练反馈
1.填空:如果>,那么
ab
(1)3 3;
(不等式性质 ) ab
(2)- -;
(不等式性质 ) ab
(3)-+2 -+2 ;
(不等式性质 )
ab
ab(4) . (不等式性质 )
1122
2. 用“<” “>”填空:
(1)若3>3,则 ; yyxx
(2)若-2<-2,则 ; yyxx
(3)若5+1<5+1,则 . xxyy
3.(1)若则 ;
x3x>6,(2)若则 ;
x3x>6,(3)若,则 ,即 4,得 .x4x4x9514x5>9
4.判断下列各题的结论是否正确?并说明理由.
b(1)若且>0,则;
aax>b,x>a
b(2)若且<0,则;
aax>b,x>a
22(3)若则;
ac>bca>b,(4)若,则. 22a>bac>bc
5.若<,得>的条件是 . xaxyay
aaa A.>0 B.<0 C.≥0 D. ≤0 a
程序说明:学生先独立练习,再小组交流、指导、检查,最后小组选派代表展示,其他小组进行点评、补充、质疑.
(二)训练二
aa6.有人说:因为5>3,所以5>3,你认为对吗?为什么?
7.把下列不等式化为或的形式:
x>ax<a
2x5>33x2>4
程序说明:学生先独立练习,再小组交流、指导、检查,最后小组选派代表展示,其他小组进行点评、补充、质疑. 学习必备 欢迎下载
设计意图: 分层测评,意在尊重个体差异,面向全体,激发学生的学习热情,挖掘每一个学生的潜能,让不同层次的学生得到不同程度的发展.
五、课时小结
教师活动:
1. 本节课你学习了那些新知识?
2. 在数学思想或方法上,你有什么感悟?
3. 在小组学习中,你觉得应该注意些什么?
4. 你还有什么困惑吗?
学生活动:畅所欲言,说出自己对本节课学习的感受和收获。
(预设问题)
1.等式与不等式的基本性质有什么相同点和不同点?
2.对不等式进行变形要特别注意什么
设计意图:让学生通过总结反思,一是为了进一步引导学生反思自己的学习方式,有利于培养归纳、总结的习惯,让学生自主构建知识体系;二是为了激起学生感受成功的喜悦,激励学生以更大的热情投入到以后的学习中去。比较不等式基本性质与等式基本性质的异同,不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辨证思维。
六、限时作业
课本P42 习题2.2 知识技能 2
设计意图:通过作业来规范学生题目完成的规范性.
七、教学反思:
本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.
教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.
为了突破教学难点,让学生能熟练准确地运用“不等式性质3",本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.
本课教学的是等式的另一个性质“等式的两边同时乘或者除以同一个不是零的数,所得的`结果仍然是等式”,并利用这一性质解只含乘除法的简单方程。在教学这一性质时,我利用课件,引导学生观察天平图,让学生在观察、分析、比较、概括活动中,自主探索并理解等式的这一性质。并且能学会用等式的性质解只含有乘法获除法运算的简单方程。
在教学例题时,我采用由扶到放,在独立思考、小组合作交流的基础上得出等式的性质,充分体现了学生的自主性,有利于培养学生的自学能力。在练习设计上,体现层次性、针对性,从练习的效果上,学生能够利用等式的性质准确的解简单的方程,教学效果很好。
本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解方程的基础。在以前的教材里,学生是应用四则运算各部分之间的关系解方程,这样的思路只适宜解比较简单的方程,而且和中学教材不一致。《数学课程标准》从学生的`长远发展和中小学数学教学的衔接出发,要求小学阶段的学生会利用等式的性质解简单的方程。反思本节课的教学,有以下成功之处:
1.在直观情境中,按“形象感受——抽象概括”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果,有利于学生的直观感受。又在学生观察、分析等式变化的基础上及时抽象、概括出等式的性质,使学生进一步积累了数学活动的经验,初步发展了抽象概括能力。
2.循序渐进地教学等式的性质。在引导学生发现等式的性质的过程中,逐步推进:先从不是方程的等式过渡到方程,再由加同一个数过渡到减同一个数。这样的设计符合学生的认知规律。
3.在学习和探索的过程中,注意培养学生独立思考的能力,在独立思考的基础上培养交流的能力与合作意识。
本节课重点讲授了“等式的性质2”和利用“等式的性质”进行解方程。在教学手段上,采用的现代多媒体技术与讲学两用稿相结合的方式,让学生得到听数学的视听享受,同时也让学生学习到实实在在的知识。在课例安排上,采用性质、例题、练习、思考四层教育法,全方位的巩固知识在学生头脑中的印象。一些例题或结论的变形更是开拓了学生的视野也提高了学生的学习数学的兴趣。
学生听课情况总体来说也是比较好的,这反映在以下几个方面:
一、回答问题积极。
学生积极回答问题并且从回答的情况来看,很显然是经过深思熟虑的。
二、听课注意力集中。
学生听课的表情告诉我,他们听课的程度——认真。
然而在教学中,还存在以下几点不足:
(1)复习导入时,没有注意学生群体的参与性,没有充分让学生全员参与,激活学生已有的知识。
(2)练习时:层次不明显、趣味性不够,还是与传统的教学一样,比较枯燥,练习时要求的单一化造成,严重影响了学生学习的积极性。
根据以上几点,今后应该注意:
练习层次化。对练习的要求是由准确到又对又快过渡;对练习的目标是好中差均有所得;对练习的安排要由易到难综合的三方面内容的层次要求。
教学趣味化。在教学中不断采用新颖的活动,诸如小竞赛、小游戏、小实验等,使学生的情绪、情感始终处于蓬勃状态,自尊心、自信心等都能得到满足。
引导学生学习弹性化。这是数学课程改革的根本目标:不同的'人学不同的数学,不同的人在数学上有不同的发展,人人学有价值的数学。让学生弹性的学习,更能体现对学生的尊重,也体现教师的教学观是否以学生的需要为着眼点。
等式的性质,是在学生掌握了方程的定义,并在小学已经学过了一些等式的基本性质的基础上教学的。本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想入手,激发学习兴趣
猜想是学生感知事物作出步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时加或减同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的'兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
二、操作验证,培养探索能力
在探究等式的性质(关于乘除的)时,安排了两次操作活动。首先让学生把一个等式两边同时乘或除以同一个数,然后思考讨论:所得结果还会是等式吗?引导学生发现所得结果仍然是等式。然后再让学生把等式两边同时乘或除以“0”,结果怎么样?通过两次实践活动,学生亲自参与了等式的性质发现过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、发散思维,培养解决问题能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,去说。促思,开启学生思维的“闸门”,对学生的五花八门的想法不急于评价,应不失时机地引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生理一理,归纳出等式的性质(关于乘除的)。通过“摆写想说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。
这周我讲了《一元一次不等式》,在讲《不等式的性质》这一节课,一开始我的设计思路是复习不等式的概念及不等式的解,然而进行不等式的3个性质教学,在学完3个性质后马上讲不等式的解集及在数轴上表示不等式的解集,最后才进行巩固练习。但我在第一个班教学过程中发现学生对不等式的解集的概念不理解,不知道如何在数轴上表示不等式的解集。
因此,我马上调整教学思路,在下个班让学生先复习不等式的概念及不等式的解,然后进行不等式的3个性质教学,讲完3个性质后马上让学生做3个性质的运用的相关练习,最后再讲不等式的解集及在数轴上表示不等式的解集。
通过这样调整教学思路,我发现学生进一步理解了不等式的概念及不等式的解,理解了不等式的3个性质并会运用这3个性质去解决有关的数学问题。不等式的解集是一个比较抽象的概念,但通过练习学生能理解什么是不等式的解集,因为不等式的解集是由学生自己解出来的,在学生理解不等式的解集的基础上再进一步让学生通过数轴表示不等式的解集,通过数形结合让学生加深对不等式的解集的认识,为下一节解不等式做铺垫。
我的反思和经验是:
1、课前充分准备是保证。从怎么引入怎么引导学生探索性质都进行充分的准备
2、对性质3这个难度的'教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于我对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到这类的题目都卡住了。
3、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,其实在这里可以训练学生的数学符号语言能力。
4、上课多注意学生的反应。根据学生的课堂反应及时的调整教学思路。
本节课中学生学习等式的性质是没有多大的难度的,在运用等式的性质进行解方程时,难度也不是很大。课本安排了不少解方程的题目,学生都能一一解决。仔细观察课本,其实会发现课本上在慢慢增加根据具体情境列出方程并解方程的题目。这是本单元的难点,这就需要让学生根据题目中的等量关系来写出方程。将等量关系写出方程和学生之前根据等量关系解答是不同的。
学生不太习惯,导致列的方程奇形怪状。这里有必要深入探究方程的含义。根据上节课的学习学生知道:方程是从等式演变而来。含有字母的等式才叫作方程。换言之,方程其实是一种含有未知量的等量关系的一种表达式。我们只需要将等量关系找到再将其表达成方程即可。学生出现问题的原因是以往大部分的解题经验所写出的'等量关系是从结果出发来写的,一切为结果服务这样一种逆向的思维过程。而现在写出题目中的等量关系却是从条件出发的一种正向思维。
虽然在三年级时,我们学习了从条件出发和问题出发两种不同的解题策略,但这离帮助学生形成这两种思维还是远远不够的。通过这样的分析,那我们在引导孩子列方程时,就要从条件出发,找等量关系来列方程了。先要帮助学生找出等量关系,在引导孩子根据等量关系表达出相应的方程。这一点的学习时必须的。
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的,解方程的根据是等式的性质,这节课上学生必须很好的掌握,现对这部分内容总结如下:
本节课的整体过程是这样的`:先利用让学生来实验,从而引出了等式的性质1,然后让学生利用等式的性质1来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是比较简单,都是能一步能得出结果的方程。讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况::①含未知数的项不知道如何处理;②没有同时进行运算;③没有加上或减去同一个数。针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来小学的方法进行;第二,不是同时进行运算还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
《等式的性质》一课教材设计了四个观察小实验活动,分别探索等式两边同时加、减和同时乘、除的规律。在用算式表示实验结果的同时,使学生知道“等式两边同时加减或乘除以同一个数(除数不能为0),等式仍然成立”这一规律。
由于等式的性质是解方程的基础和依据,所以我在教学时给予特别重视,活动一、用天平直观图演示的操作,给学生提供认真观察、积极思考、交流自己发现的空间,切实理解等式的性质。活动二、用课件进行演示,在活动一的基础上引导学生自主探究,合作交流,自己总结等式的性质。基础训练中,分别安排了在天平上填运算符号和数字,在课堂练习中填数的模拟解方程练习。练习时,让学生看懂题目的要求,特别是第1题中的训练题说一说是怎样想的,也就是根据等式的基本性质做的,打实基础为下面用等式的基本性质解方程做准备。
本课讲完之后,感觉学生的学习效果还不错,我认为运用图片加演示进行教学,对于学生的学习是很有帮助的,提出精炼的思考问题和适当的点拔会增加课堂的教学效率,紧凑的教学环节使课堂教学更加顺畅。尊重学生,给学生更多的发言机会,暴露他们的思维,把思维留给学生是最好的教学方式,注重了学生上课语言表述的`规范与准确,书写的工整。
总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。
一、说教材1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程...
一般给学生们上课之前,老师会提前准备好教案和课件,这就需要老师自己花点时间去编写。新老师要认真对待教案和课件,因为这对于课堂活跃非常有帮助。那么怎样的教案和课件才算是优秀的呢?下面是好工具范文网编辑整理的“等式的性质课件”,希望你能从中学到很多有用的知识!...
好工具范文网编辑整理了以下可能与您有关的“不等式课件”,感谢您的收藏和阅读也请不吝帮我们传播这篇有用的文章。为了促进学生掌握上课知识点,老师需要提前准备教案,老师在写教案课件时还需要花点心思去写。老师上课时要以教案课件为依据。...
作为一名敬业的教师,通常需要准备一份完整的教学设计。教学设计应该遵循教学过程的基本规律,明确教学目标,解决“教什么”的问题。如何撰写一份有效的教学设计呢?以下是我整理的一份关于一元一次不等式的教学设计,供大家参考。希望这份设计能够帮助到有需要的读者。一元一次不等式课件 篇1 一、说教材的地位和作用...
发布时间:2024-09-04
不等式的基本性质课件 篇1 教学目标 1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。 2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解...
发布时间:2024-06-19
作为一位兢兢业业的人民教师,就难以避免地要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的一元一次不等式教学设计,仅供参考,希望能够帮助到大家。一元一次不等式...
发布时间:2024-12-08
身为一名人民教师,教学是我们的工作之一,写教学反思能总结我们的教学经验,那要怎么写好教学反思呢?下面是小编整理的不等式组教学反思,欢迎大家分享。不等式与不等式组教学计划 篇1 一,学情分析 从上学期的学习中可看出,这批学生对知识掌握程度不一,成绩悬殊较大。有的学生智力较好,自尊心强,好动。有...
发布时间:2023-12-06
在给学生上课之前,老师早早准备好教案和课件,所以老师最好能认真写好每一个教案和课件。按照顺序逐步推进的教案可以帮助学生更好地理解知识。本文将专注于对“一元一次不等式课件”的研究和应用领域进行研究,敬请期待我们网站上发布的更多相关信息!...