搜索更多内容
最新幂函数幼儿园教案实用十三篇
身为一位优秀的老师,我们要有很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,那要怎么写好教学反思呢?下面是小编精心整理的幂函数教学反思,欢迎阅读,希望大家能够喜欢。
第二十四教时
教材:倍角公式,推导和差化积及积化和差公式
目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。
过程:
一、 复习倍角公式、半角公式和万能公式的推导过程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教学与测试》p115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化简得:
∵ 即
二、 积化和差公式的推导
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的.优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)
例三、 求证:sin3sin3 + cos3cos3 = cos32
证:左边 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右边
原式得证
三、 和差化积公式的推导
若令 + = , = ,则 , 代入得:
这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小结:和差化积,积化和差
五、 作业:《课课练》p3637 例题推荐 13
p3839 例题推荐 13
p40 例题推荐 13
设计说明
本节课主要采用自主探究与小组合作的形式进行教学。这样教学不仅可以让学生体验到创造的过程,也可以增强学生的合作意识。本节课的教学设计主要体现以下两个方面:
1.创设情境,激发兴趣。
本节课从对联导入,使学生发现对联的妙趣所在,激发学生探索数学奥秘的兴趣,为学习倒数的意义作铺垫,同时也为宽松的课堂氛围打下...
查看详情>>搜索更多内容
推荐栏目
热门标签