搜索更多内容
小学解决问题教案热门十四篇
设计说明
1、创设生活情境,激活已有知识经验,为学习新知做好准备。
数学学习中最重要的一部分就是解决现实生活中的问题。因此本设计紧紧围绕购物这一学生熟悉的场景,为学生创设了一个个现实的生活情境,把学生的学习活动同现实生活紧密联系起来,激发学生的好奇心和求知欲,增强学生应用数学的意识。同时激活学生已有的知识经验,并为学生提供了自主探究、主动获取新知的时间和空间,充分让学生通过看、想、说、算等实践活动,感知新知和旧知的内在联系,为学生学习新知做好准备。
2、注重对数量关系的分析,培养解决问题的能力。
例3所反映的数量关系是除法现实模型的拓展,渗透了单价、数量和总价之间的数量关系,需要学生根据除法的意义来解决。因此,本设计在注重引导学生对数量关系进行分析的过程中,把要解决的问题与除法的现实模型结合起来,让学生运用已有的除法知识探究解决问题的方法,加深学生对除法意义的理解,培养学生发现问题、提出问题和解决问题的能力。
课前准备
教师准备 ppt课件
教学过程
⊙创设情境 ,引入新课
1、创设情境,导入新课。
六一儿童节快到了,亮亮想用自己的零花钱给孤儿院的小朋友们买些玩具,可是面对商店里那么多好玩的玩具,亮亮不知道手中的零花钱能买多少个玩具,同学们,你们愿意用这节课学到的知识帮助亮亮解决这个问题吗?(板书课题:解决问题)
2、出示情境图:现在,让我们一起跟着亮亮去商店看一看吧!
⊙合作交流,解决问题
1、观察情境图,理解题意,说一说都知道了什么。
(1)课件出示教材42页情境图,学生观察后,同桌间互相说一说自己获取的数学信息。
(一个玩具熊6元,一个地球仪8元,一个皮球9元,要解决的问题是“56元可以买几个地球仪”)
(2)引导学生思考:要帮助亮亮解决这个问题,需要知道哪些信息?
预设
生:要求出“56元可以买几个地球仪”,就要知道地球仪的价钱,从图中可以看到一个地球仪8元。
2、合作学习,解决问题。
(1)小组合作,讨论解决问题的方法,教师巡视指导。
(2)汇报,集体交流解题思路。
预设
生1:一个地球仪8元,求56元可以买几个地球仪,就是求56元里面有几个8元。这属于平均分问题,应该用除法计算。
生2:列式56÷8,想七八五十六,商是7。56元可以买7个地球仪。
3、初步感受总价、单价和数量之间的关系。
(1)引导学生先组内说一说这个算式所表示的意义,然后集体交流。
预设
生:56元表示买地球仪用的总钱数,8元表示一个地球仪的价钱,7个表示可以买地球仪的个数。这个算式表示用56元买8元一个的地球仪可以买7个。
(2)教师小结。
总钱数我们可以称之为总价,一个地球仪的价钱我们称之为单价,购买了7个地球仪我们称之为数量,因此我们得到这样的数量关系:数量=总价÷单价,单价=总价÷数量,总价=单价×数量。
4、引导学生独立思考,检验结果。
(1)生自由发言,交流检验的过程。
(2)全班交流检验的过程:一个地球仪8...
查看详情>>小学解决问题教案
课前准备好课堂所需的教案和课件是非常重要的,每位教师都需要撰写这些资料。精心编制的教学教案可以帮助教师有效地指导学生学习。那么,有哪些值得参考的教案和课件呢?好工具范文网的编辑特别为您准备了“小学解决问题教案”,希望您尝试之后会喜欢。感谢您一直以来对我们的支持,希望您能收藏并关注我们的网站!
教学内容:
教材第69页例3及相关题目。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征;掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思 考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化教育;通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:
掌握计算组合图形面积的方法,并能准确计算。
教学难点:
对组合图形进行分析。
教学准备:
多媒体课件。
教学过程
学生活动(二次备课)
一、情境导入
同学们,图形世界是美丽的、奇妙的,世界因为有了五彩的图案而更加美丽。古时候,由于人们的活动范围小,往往凭自己的直觉认识世界。看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(课件展示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。比如,精美的雕窗、鸟巢和水立方等建筑,这里面也蕴含了很多数学知识。
二、预习反馈点名让学生汇报预习情况。
(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)
三、探索新知
课件出示例3中的雕窗图案。
1.观察一下,这两种设计图案有什么联系和区别?每个图案中的圆和正方形有什么关系?都是由正方形和圆组成的,但左边是外方内圆,正方形的边长等于圆的直径;右边是外圆内方,圆的直径等于正方形的对角线的长。
2.理解题意。如果两个圆的半径都是1m,求出正方形和圆之间部分的面积。抽象成我们学过的数学图形就是:思考:怎样求正方形和圆之间部分的面积?先想一想,再同桌交流。左图求的是正方形比圆多的面积,即用正方形的面积减去圆的面积。右图求的是圆比正方形多的面积,即用圆的面积减去正方形的面积。
3.分析解答。知道两圆的半径,就可以求出它们的面积,关键是求正方形的面积。观察图可知,左图正方形的边长等于圆的直径,由此可求面积;右图正方形的边长不知道,不能直接用公式求面积,可以将正方形看成两个底是圆的直径,高是圆的半径的三角形。学生自己计算,集体订正。
4.回顾反思,理解算法。师:如果两个圆的半径是r,结果又是怎样的?结合图形算一算。学生分小组探究、汇报结论。想一想:当r=1时,和前面的结果一致吗?代入看看。
小结:不管圆的大小如何改变,外方的正方形与圆之间的面积都是半径平方的0.86,而内方的正方形与圆之间的面积都是半径平方的1.14倍。
四、巩固练习
完成教材第70页做一做...
查看详情>>