高中立体几何知识点总结

格式:DOC上传日期:2024-12-11

高中立体几何知识点总结(7篇)

2024-12-11 15:32:52

【#实用文# #高中立体几何知识点总结(7篇)#】总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。你想知道总结怎么写吗?下面是好工具范文网小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

高中立体几何知识点总结 篇1

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,则有>1?;=1?;<1?.

概括为:作差法,作商法,中间量法等.

3.不等式的性质

(1)对称性:a>b?;

(2)传递性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可开方:a>b>0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,则

①真分数的性质:<;>(b-m>0);

高中立体几何知识点总结 篇2

点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。

空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。

判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。

要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。

已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。

判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。

两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。

面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。

空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。

引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。

知识创新无止境,学问思辨勇攀登。

多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。

算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。

展开分割好办法,化难为易新天地。

高中立体几何知识点总结 篇3

平面

通常用一个平行四边形来表示。

平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。

在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:

a) A∈l—点A在直线l上;Aα—点A不在平面α内;

b) lα—直线l在平面α内;

c) aα—直线a不在平面α内;

d) l∩m=A—直线l与直线m相交于A点;

e) α∩l=A—平面α与直线l交于A点;

f) α∩β=l—平面α与平面β相交于直线l。

平面的基本性质

公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;

公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线;

公理3经过不在同一直线上的三个点,有且只有一个平面。

根据上面的公理,可得以下推论,

推论1经过一条直线和这条直线外一点,有且只有一个平面;

推论2经过两条相交直线,有且只有一个平面。

推论3经过两条平行直线,有且只有一个平面。

公理4平行于同一条直线的两条直线互相平行。

拓展阅读:高中数学立体几何解题技巧

1.平行、垂直位置关系的论证的策略:

(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:

主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:

(2)直线和平面所成的角

①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角

①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:

(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3.空间距离的计算方法与技巧:

(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的.三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

高中立体几何知识点总结 篇4

高中数学几何公理,定理 。全部13.平行四边形的判定与性质:平行四边形的定义:两组对边分别平行的四边形是平行四边形 。

平行四边形的性质:

(1)平行四边形的对边相等;

(2)平行四边形的对角相等;

(3)平行四边形的对角线互相平分;

(4)平行线之间的距离处处相等 。

平行四边形的判定:

(1)一组对边平行且相等的四边形是平行四边形;

(2)对角线互相平分的四边形是平行四边形;

(3)两组对角分别相等的四边形是平行四边形;

(4)两组对边分别相等的四边形是平行四边形

高中几何的所有定理立体几何

1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题 。

能够用斜二测法作图 。

2.空间两条直线的位置关系:平行、相交、异面的概念;

会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法 。

3.直线与平面

①位置关系:平行、直线在平面内、直线与平面相交 。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据 。

③直线与平面垂直的证明方法有哪些?

④直线与平面所成的.角:关键是找它在平面内的射影,范围是{00.900}

⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

4.平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

(2)掌握平面与平面平行的证明方法和性质 。

(3)掌握平面与平面垂直的证明方法和性质定理 。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直 。

(4)两平面间的距离问题→点到面的距离问题→

(5)二面角 。二面角的平面交的作法及求法:

①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形 。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?

平面向量

1.基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量 。

2. 加法与减法的代数运算:

(1) .

(2)若a=( ),b=( )则a b=( ).

向量加法与减法的几何表示:平行四边形法则、三角形法则 。

以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -

且有| |-| |≤| |≤| |+| |.

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);

+0= +(- )=0.

3.实数与向量的积:实数 与向量 的积是一个向量 。

(1)| |=| |·| |;

(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.

(3)若 =( ),则 · =( ).

两个向量共线的充要条件:

(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .

(2) 若 =( ),b=( )则 ‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.

4.P分有向线段 所成的比:

设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比 。

当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;

高中立体几何知识点总结 篇5

1、平面的基本性质:

掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2、空间两条直线的位置关系:

平行、相交、异面的概念;

会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3、直线与平面

①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?

④直线与平面所成的角:关键是找它在平面内的射影,范围是

⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理。 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量。如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线。

4、平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的`证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题→点到面的距离问题→

(5)二面角。二面角的平面交的作法及求法:

①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。

高中立体几何知识点总结 篇6

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。

难点:函数,圆锥曲线。

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件。

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用。

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和。

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用。

5.平面向量:初等运算、坐标运算、数量积及其应用。

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的`解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用。

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量。

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用。

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布。

12.导数:导数的概念、求导、导数的应用。

13.复数:复数的概念与运算。

高中立体几何知识点总结 篇7

1、调整好状态,控制好自我。保持清醒。高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

2、提高解选择题的速度、填空题的准确度。

高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的`一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

3、审题要慢,做题要快,下手要准。

题目本身就是解开高考数学题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

  • 为您提供有关“高中立体几何知识点总结”的一些重要内容好工具范文网有备而来,如果你觉得这个小技巧很好用请尽情分享给你的朋友和家人。各种文档编写让生活和工作更具色彩,阅读范文模板是写作学习的关键步骤,写作过程中能够借鉴范文,形成自己的写作特色。...

  •   总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。高中立体几何知识点总结 篇1  已知函数有零点(方程有根)求参数取...

  • 高中立体几何知识点总结 篇1  1.数列的定义  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.  ...

  • w
    立体几何课件5篇

    发布时间:2024-07-25

      作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。快来参考教案是怎么写的吧!以下是小编整理的认识立体图形教案,欢迎阅读与收藏。立体几何课件 篇1  活动目标:  1、初步认识圆柱体的基本特征,探索生活中与圆柱体相似的物体。  2、激发幼儿探索圆...

  • 以下是本文的首篇介绍“高中政治知识点总结”,哪一种文献样本可以给予我们一些启示?文件的处理涉及的不仅仅是电子文档,还包括纸质文件。通过阅读一些范文,我们可以更好地开展创作。...

  • w
    高中政治知识点总结(8篇)

    发布时间:2024-02-05

    本文标题为“高中政治知识点总结”,在社会的进步过程中撰写文档是不可或缺的。优秀的范文可以为写作提供良好的切入点和参考架构。通过分析这些范文,我们可以学会如何从整体上思考设计方案。那么,有哪些范文是非常优秀的呢?...

  • w
    初中物理知识点总结(7篇)

    发布时间:2024-01-03

    为了更好地迎合您的需求,我们对“初中物理知识点总结”进行了编辑。处理大量文档是实现我们工作目标的先决条件,而范文给我们提供了灵感和思路。虽然范文的内容是优秀的,但我们应该注意不要过于单一。请您继续阅读,以获取更多相关资讯!...

  •   漫长的学习生涯中,很多人都经常追着老师们要知识点吧,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。为了帮助大家掌握重要知识点,以下是小编为大家整理的高中政治知识点总结(精选6篇),仅供参考,大家一起来看看吧。高中政治知识点总结 篇1  高中政治高考知识点归纳  1、文化的继承和发...

复制全文
下载文档