分数的基本性质的教案

格式:DOC上传日期:2024-12-10

分数的基本性质的教案十篇

2024-12-10 17:52:13

【#实用文# #分数的基本性质的教案十篇#】作为一名人民教师,时常需要用到教学设计,借助教学设计可以让教学工作更加有效地进行。那么写教学设计需要注意哪些问题呢?以下是好工具范文网小编整理的《分数基本性质》教学设计,仅供参考,希望能够帮助到大家。

分数的基本性质的教案 篇1

一、教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

二、教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

三、教学难点:

理解和掌握分数的基本性质,初步建立数学模型。

四、教学准备:

课件、正方形的纸。

五、教学设计过程:

(一)迁移旧知.提出猜想

1、回忆旧知

猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3

你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数÷除数=

谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

A、 看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

B、 讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2 = 2/4 = 4/8

C、研究规律

师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等( )不相等( )

猜想是否成立?

成立( )不成立( )

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的.数,0除外)

师:分数的基本性质与商不变性质有什么联系?

D、质疑完善

3/4 = 3×( )/ 4×( )

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

(三) 练习升华

1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、 和 哪一个分数大,你能讲出判断的依据吗?

(四)总结延伸

师:这节课学了什么?

师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)

六、作业p87-1、2

板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

6÷8

3÷4

12÷16

分数的基本性质的教案 篇2

教学内容:

苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。

预设目标:

1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。

2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。

教学重点:

探索、发现、归纳和理解分数的基本性质。

教学过程:

一、导入

猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。

二、学习新知

1、提供例证

(1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?

板书:1/3=2/6=3/9(得出三个相等的分数)

(2)学生折纸找与1/2相等的分数。

你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?

展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16

2、诱导探索

提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?

3、探究新知

(1)独立思考或小组交流。

(2)探究验证。

你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?

教师根据学生的回答进行板书。

4、揭示结论:出示分数的基本性质的内容,并揭示课题。

5、深究结论:

(1)在分数的基本性质中,你认为哪些字词比较重要,为什么?

(2)齐读并理解记忆分数的基本性质。

三、多层练习

1、填一填。(在○里填运算符号,在□里填数或字母)。

4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

5/8=5○□/8○67/12=7○□/12○□

2、判断。

3/4=3+4/4+4()12/15=12÷n/15÷n()

5/25=5×5/25÷5()5/6=25/30()

四、课堂作业:

1、第62页“练一练”2。

2、第63页第3题。

3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?

反思

“分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的`基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,

从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:

1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。

2、学生在自主探索中科学验证。

在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。

3、让学生在多层练习中巩固深化。

在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

分数的基本性质的教案 篇3

教学内容:

人教版数学五年级下册第57页例1、例2。

教学目标:

(1)经历探索分数的基本性质的过程,理解分数的基本性质。

(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

(3)培养学生的观察、比较、归纳、总结概括能力

(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质

教学重点:

探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探究、归纳概括分数的基本性质。

教学过程:

一、情境设置,引入新课:

唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”

问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?

问2:猪八戒有没有多吃到饼了?

二、探究新知,解决问题

1、师:到底谁的猜想是正确的呢?

(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?

(2)学生汇报

(3)得出结论:1/4=2/8

2、初步概括分数基本性质

(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?

提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?

师板书:分数的分子分母同时乘相同的.数,

分数的大小不变。

(2)师:谁来举一个例子。师板书,并问:同时乘以了几?

(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。

师板书:或者除以

3、理解运用分数基本性质

(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)

学生回答,并说明理由。

(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。

(课件出示式子:)这个式子成立吗?

生:因为在分数当中分母乘就等于0,分母不能为0。

师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?

生:不成立,因为除数不能为0

(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

生:同时和相同的数。

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)

师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.

三、知识运用

1、例2:把2/3和10/24化成分母是12而大小不变的分数。

(1)问:分子分母应怎样变化?变化的依据是什么?

(2)让生独立完成,完成后汇报你是怎样想的?

2.完成课件练习

3、拓展延伸:

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.

四、课堂小结

1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

五、板书设计

分数的基本性质

1/4 =2/8

分数的分子分母同时乘相同的数(0除外),除以分数的大小不变。

分数的基本性质的教案 篇4

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

重点难点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。

教具学具: 课件,每人一张白纸,一张圆纸片,彩笔

教学时间:1课时

教学流程:

一、复习引入

1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?

120÷30=4

(120×3)÷(30×3)

=360÷90

=4

120÷30=4

(120÷10)÷(30÷10)

=12÷3

=4

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

除法与分数之间有什么联系?

被除数÷ 除数=被除数/除数

教师板书:分数的基本性质

二、动手操作

(1)用分数表示涂色部分。

( )

( ) )

( ) )

①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。

②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)

③继续折成16份,看看原来的3/4现在又成了?(12/16)

(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!

(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16

(2)用分数表示涂色部分。

( ) )

( ) )

( ) )

根据上面的过程,你能得到一组相等的分数吗?

8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

三、发现规律

1、请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

学生观察、思考,完成上面的图形,再在小组内交流。

学生交流后,教师集中指导观察,板书这组数字,说出其中的'规律。

3/4=6/8=12/16 8/12=4/6=2/3

从这些数字中可以得出:

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)

教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?

得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。

3、课件出一组分数让学生练习填

2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()

四、练一练(课件出示)

1、判断.(手势表示。)

(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()

(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )

( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )

2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )

3、数学游戏(课件出示)

说出相等的分数 1/4和2/8

(1)你能根据分数的基本性质,再写出一组相等的分数?

所写的分数是否相等?你是怎样想的?

(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

五、课本练习中的第1,2题。

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

七、板书设计:

3/4=3×2/4×2=6/8=6×2/8×2=12/16

8/12= 8÷2/12÷2= 4÷2/6÷2=2/3

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。

分数的基本性质的教案 篇5

教材简析:

分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

设计理念:

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的'教学模式。

《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

教学目标:

1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

2、培养学生观察、分析、思考和抽象、概括的能力.

3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

教学重点:

使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

每生三张正方形纸

教学方法:

演示法、观察法、讨论法、交流法。

分数的基本性质的教案 篇6

教学目标:

结合趣味故事经历认识分数的基本性质的过程。

初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣

教学重点:

理解掌握分数的基本性质。

教学难点:

归纳分数的性质。

学生准备:

长方形纸片。

一、创设故事情境,激发学生学习兴趣并揭示课题。

编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?

让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

二、小组合作,探究新知:

1、动手操作、形象感知

出示课件,让学生观察讨论图中分数的涂色部分是多少?

A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。

2、观察比较、探究规律

(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题

(4)通过从左到右的观察、比较、分析,你发现了什么?

使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】

3、引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?

4、归纳规律

提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的.数﹙0除外﹚,分数的大小不变,这是分数的基本性质”

6、小结

同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】

四、巩固强化,拓展应用

多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

五、游戏找朋友。

六、布置作业:

在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。

分数的基本性质的教案 篇7

教学目标

进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。

教学重难点

旋择适当的方法进行分数的大小比较。

教学准备分数卡片

教学过程

一、基本练习

学生自由练习

互相说一个分数,再通分。

学生汇报 纠错

二、集中练习

教师出示:比较下面各组分数的大小

1、 和 和

2、 和 和

请同学评讲

课本练习68页第九题 把下面分数填入合适的圈内。

比 大的分数有:

比 小的分数有:

师生讨论:怎样快速的分类?

自由说一个比 的分数。并说出理由。

三、解决实际问题的练习

小明:我10步走了6米,

小红:我7步走了4米。

问:谁的平均步长长一些?

小组讨论,明确解题步骤。

小明:6÷10= =

小红:4÷7=

因为 = = >

所以 >

答:小明的'平均步长长一些。

四、拓展练习:

下面3名小棋手某一天训练的成绩统计

总盘数赢的盘数赢的盘数占总数的几分之几

张129

李107

赵138

谁的成绩最好?

小组合作集体解决题型。

三个分数的大小比较,怎样比较较好?

五、课堂作业

68页第11题

分数的基本性质的教案 篇8

教学内容:人教版小学数学第十册第75页至78页。

教学目标:

1、分数是数学中常见的表示形式,它由分子和分母组成,可以表示部分和整体之间的关系。学生在学习分数时,需要掌握分数的基本性质,比如分子和分母可以同时乘以一个非零数,来得到一个等价的分数。这样做不会改变分数的大小,只是改变了分数的形式。这个性质在简化分数、比较分数大小等问题中非常有用。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学准备:

课件、长方形纸片、彩笔。

教学过程:

一、创设情境,忆旧引新

悟空师徒四人来到一个小国家——算术王国,猪八戒饥肠辘辘,悟空便对他说:“我给你10块馒头,平均分2天吃完,怎么样?”八戒闻言大怒:“太少了,你这猴子欺负我!”悟空眯起眼睛说:“那我就给你100块馒头,平均分20天吃完,可以了吧。”八戒听后大喜:“太好了!太好了!这下每天我可以多吃点了!”

同学们,你们认为八戒说得有道理吗?(没道理)

很久很久以前,在一个神秘的森林里,一只小松鼠和一只小松鼠精灵相遇了。小松鼠问道:“你是谁?为什么看起来和我这么像?”小松鼠精灵神秘地笑着说:“或许我们有着某种特殊的联系,但这个谜团需要我们一起去解开……”

为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

先算出商,再观察,你发现了什么?

被除数和除数同时扩大(或缩小)相同的倍数,商不变。

同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

8÷15=? 3÷20=?? 14÷27=

二、动手操作 、导入新课

同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

我们把三张纸片比喻成三块饼,大家一起比较,每人的三块饼大小是相同的吗?请拿出第一块饼,我想与你每人一块,确保它们大小一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?

我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

当我们想要平均分配四块给你和我时,你觉得这种分配方式可行吗?用分数来表示这种分配又是怎样的呢?这三个分数的大小是否相等呢?为什么呢?在本节课中,我们将一起探讨这个数学问题。

这里是一个小故事:小明手里拿着三根不同长度的绳子,他想知道这三根绳子的长度是否相等。于是,他将三根绳子分别放在桌子上比较。经过比较后,小明发现这三根绳子看起来似乎长度相等。这让小明感到很惊讶,他开始思考为什么这三根绳子的长度看起来一样。这个问题困扰着小明,他决定继续探究原因。

三、探索分数的基本性质

你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?

1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。

分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

3、将结论应用到

(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

(3)是怎样变化成与之相等的 的?

(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会更接近前者。不过,不能同时乘或除以0,因为0不能作为除数。

5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

有一位父亲将一块土地留给了他的三个儿子。大儿子认为这块土地是他的,二儿子认为这块土地是他的,三儿子也认为这块土地是他的。大儿子和二儿子觉得自己吃亏了,于是他们开始争吵。这时,阿凡提路过,询问了争吵的原因后,他笑了笑,给了他们一些建议,三兄弟因此停止了争吵。

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

⒍小结。

从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

学生通过观察和比较发现,当分子和分母同时扩大或缩小相同的倍数时,所得的分数的大小并不会改变。这说明分数的大小取决于分子和分母的比例关系,只有在同向、同倍变化的情况下,分数的大小才能保持不变。这一规律也适用于其他分数,只要分子与分母按相同的比例变化,所得的分数大小仍然保持不变。因此,我们可以得出分数的基本性质:分子与分母是同时变化的,是同向变化的.,是同倍变化的。

五、巩固练习

⒈卡片练习:

⒉做P96“练一练”1、2。

⒊趣味游戏:

数学王国即将举办一场音乐会,分数大家族的节目是女声大合唱,演出时间紧迫,需要大家快速帮助合唱队的成员按照要求排好队伍。请尽快协助整理队伍,谢谢!

要求:第一排是所有同学的分数值等于,第二排是所有同学的分数值等于,还有一位同学是指挥,他是小明。我选择小明作为指挥是因为他在团队合作中展现出了出色的领导能力和组织能力,能够有效地协调大家的行动,确保任务顺利完成。

【通过练习,分数是数学中的一个重要概念,可以表示一个整体被等分成若干份的情况。分数由分子和分母组成,分子表示被等分的部分数量,分母表示整体被等分的份数。分数可以用来表示部分与整体之间的关系,比如$frac{1}{2}$表示一个整体被等分成两份中的一份。在分数的运算中,我们需要掌握分数的基本性质,比如分数的大小比较、分数的化简、分数的四则运算等。对分数的基本性质有深刻的理解可以帮助我们更好地应用分数解决实际问题。

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

七、布置作业

做P97练习十八2。

分数的基本性质的教案 篇9

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学设计过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0.24=

0.288÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的`大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

六、板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质的教案 篇10

【教材依据】

《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。

【设计理念】

根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

【学情与教材分析】

《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

【教学目标】

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

【教学重点】

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

【教学难点】

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

【教学准备】

多媒体课件长方形白纸、圆片,彩色笔等。

【教学过程】

一、创设情境,激趣导入

师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)

生:分数的分子分母发生了变化分数的大小不变。

师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的'分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五:作业练习册2、4题

【板书设计】

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

【教学反思】

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

  • w
    分数的基本性质的教案

    发布时间:2023-12-03

    教学目标1、进一步理解分数基本性质的意义,掌握约分的方法。2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。教学重难点约成最简分数教学准备:分数卡片口算卡片教学过程一、自主回顾回顾一下对约分的理解情况突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。师:什么是...

  • w
    分数的基本性质课件17篇

    发布时间:2024-06-10

      分数的基本性质这部分内容,在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。下面是小编为你带来的分数的基本性质课件,希望对你有所帮助。分数的基本性质课件 篇1  一、教学目标  (一)知识与技能  知道把一些物体看做一个整体平均分成若干份,其中的一份或几份也可以用分数表示。  (二...

  • 分数的基本性质课件 篇1  教学内容:人教版五年级数学下册57页内容及58、59页练习。  教学目标:  知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。  过程与方法:引导学生在参与观...

  • w
    比例的基本性质课件

    发布时间:2024-05-02

      作为一名专为他人授业解惑的人民教师,有必要进行细致的课件设计准备工作,课件设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那要怎么写好课件设计呢?以下是小编精心整理的《比例的意义与基本性质》课件设计,希望能够帮助到大家。比例的基本性质课件 篇1  一、教学目标  1.知识与...

  • 教案课件是老师需要精心准备的,这就需要我们老师自己抽时间去完成。教师应该注重教案的实用性和实效性从而提高授课效果,如何才算是写好一份教案课件呢?以下是好工具范文网为您整理的一些“比的基本性质课件”的内容,请多留意我们网站的最新资讯不要错过任何有价值的信息!...

  • 不等式的基本性质课件 篇1  教学目标  1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。  2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解...

  • w
    分数与除法教案分享十篇

    发布时间:2024-07-01

      在教学工作者开展教学活动前,很有必要精心设计一份教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写呢?以下是小编精心整理的分数与除法教案,仅供参考,大家一起来看看吧。分数与除法教案 篇1  内容:  本册教科书第28页例2和练习八第1~4题。  教学目的:  使学生理解一个数除以分...

  • w
    小数的性质教案

    发布时间:2024-01-10

    教案课件是教师需要仔细准备的资料,所以教师必须认真准备自己的教案课件。学生的准确反馈能够帮助教师消除教学中的疑虑。那么,一份好的教案课件应该包含哪些步骤呢?以下是栏目小编精心挑选的一篇有趣文章的标题:“小数的性质教案”。希望能传播正能量。如果您觉得这篇文章有意义,请与身边的朋友分享!...

复制全文
下载文档