范文网

三角形内角课件

发布时间:2023-10-12
1

2024三角形的内角和课件实用

三角形的内角和课件

三角形的内角和课件 篇1

教学内容:

p.28、29

教材简析:

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发三角形内角和是180度的猜想,再通过组织操作活动验证猜想,得出结论。

教学目标:

1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。

2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:

三角板,量角器、点子图、自制的三种三角形纸片等。

教学过程:

一、提出猜想

老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180

看了这2个算式你有什么猜想?

(三角形的三个角加起来等于180度)

二、验证猜想

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

直角三角形的折法有不同吗?

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。

4、试一试

三角形中,角1=75,角2=39,角3=( )

算一算,量一量,结果相同吗?

三、完成想想做做

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多...

查看详情>>
2

三角形内角和课件

三角形内角课件
内角课件

三角形内角和课件 篇1

学习目标:

(1) 知识与技能 :

掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习

二.回顾课本

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤

①画图

②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长bc得到一平角bcd,然后以ca为一边,在△abc的外部画a。

② 如图1,延长bc,过c作ce∥ab

③ 如图2,过a作de∥ab

④ 如图3,在bc边上任取一点p,作pr∥ab,pq∥ac。

三、巩固练习

四、学习小结:

(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测:

六、布置作业

三角形内角和课件 篇2

《三角形的内角和》说课稿

各位领导、老师:

大家上午好!今天我说课的内容是青岛版小学数学四年级下册第四单元“角与三角形的认识”信息窗2中的第二课时《三角形的内角和》。下面我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价、资源开发七个方面进行说课。

一、教材分析

本册教材依据“数与代数”、“图形与几何”、“统计与概率”和“综合与实践”这四个维度共安排了七个单元,在图形与几何领域本册教材安排了两个单元:第三单元“角与三角形的认识”和第五单元“观察物体”,而第三单元“角与三角形的认识”既是本册教材的教学重点也是教学难点,在整个图形与几何领域起到承上启下的重要地位。上承一年级下册:方位与图形(各种平面图形的认识);二年级下册:角的初步认识(直角、锐角、钝角的认识);三年级上册:图形的周长,下启五年级上册多边形的面积;承上启下,使知识之间循序渐进,螺旋上升。

三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形...

查看详情>>