搜索更多内容
二元一次方程课件(必备十二篇)
作为一名优秀的人民教师,编写教案是教学活动的重要组织和计划工具。本文将提供一份七年级数学二元一次方程组的教案,供大家参考和学习。欢迎阅读!
教学目标:
1.会用加减消元法解二元一次方程组.
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元.
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:
1、上面“情境创设”中的`方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
巩固练习(二):练一练1.(2)(3)(4)2.
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的.辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教...
查看详情>>二元一次方程课件
【教学目标】
知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。
过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。
情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
【教学重点、难点】
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学过程】
一、 复习引入:
(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
(2) 合作学习:
①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?
这个问题中有几个未知数,能列一元一次方程求解吗?
如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?
二、 新课教学
这就是我们今天要学习的4、1二元一次方程(板书课题)
(1) 观察上述两个方程,归纳特点
(2) 讨论选择正确概念
① 含有两个未知数的方程叫二元一次方程。
② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。
(3) 做一做p86——1,2
(4) 例:已知方程3x+2y=10
① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)
② 求当x=-2,0,3时,对应的y的值
(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?
回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。
同理试写出该方程的两个解(注意写法格式)
思考:方程3x+2y=10的解有多少个?
师归纳:二元一次方程解具不定性和相关性
(5) 练习:p88——课内练习1,2
(6) 补充练习:p89---作业题4(说明:方程的解须是正整数)
已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?
(说明:1.本例是根据教科书p89---b组第5题改编。原题要求a的值,但学
生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原
题要求高了,其实有利于各类学生参与并寻求结论。
三、 课堂小结:
二元一次方程的意义及二元一次方程的解的概念(注意书写格式)
二元一次方程解的不定性和相关性
会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式
四、 作业 :
课堂作业本
(二)难点
灵活运用加减消元法的技...
查看详情>>搜索更多内容
推荐栏目
热门标签