高中数学教案模板范文单调性(优质3篇)

格式:DOC上传日期:2024-10-13

高中数学教案模板范文单调性(优质3篇)

2024-10-13 13:50:19

高中数学教案模板范文单调性 篇1

一、教学目标

1、知识与技能:

掌握函数单调性的基本概念。

学会利用导数判断函数的单调性。

能够利用函数的单调性解决一些实际问题。

2、过程与方法:

通过观察、归纳、抽象等方法,探索函数单调性的规律。

培养学生独立思考、合作学习和解决问题的能力。

3、情感、态度与价值观:

激发学生的学习兴趣和探究欲望。

培养学生严谨的数学思维和逻辑推理能力。

二、教学内容

1、函数单调性的定义。

2、利用导数判断函数单调性的方法。

3、函数单调性在实际问题中的应用。

三、教学重难点

重点:函数单调性的定义和判断方法。

难点:利用导数判断函数单调性的过程和应用。

四、教学方法和手段

1、教学方法:

启发式教学:通过问题引导,激发学生的学习兴趣。

互动式教学:鼓励学生参与讨论,发表自己的观点。

案例式教学:通过分析具体案例,加深对函数单调性的理解。

2、教学手段:

多媒体课件:展示函数图像和导数图像,帮助学生理解函数的`单调性。

数学软件:利用数学软件绘制函数图像,进行函数单调性的判断。

实物模型:通过实物模型展示函数的单调性,增强直观性。

五、教学过程

1、导入新课:

通过回顾函数的定义和性质,引入函数单调性的概念。

提出问题:如何判断函数的单调性?

2、探究新知:

讲解函数单调性的定义,引导学生理解函数单调性的本质。

介绍利用导数判断函数单调性的方法,推导相关公式和定理。

举例说明如何利用导数判断函数的单调性,并归纳出一般步骤。

3、巩固练习:

布置适量练习题,让学生自主完成,巩固所学知识。

教师巡视指导,及时纠正学生的错误,并给予适当的提示。

4、拓展应用:

介绍函数单调性在实际问题中的应用,如经济学中的最值问题、物理学中的运动问题等。

通过案例分析,让学生了解函数单调性在实际问题中的应用方法和思路。

5、总结归纳:

总结本节课的重点内容,强调函数单调性的定义和判断方法。

归纳利用导数判断函数单调性的一般步骤和注意事项。

6、作业布置:

布置适量作业题,要求学生运用所学知识解决实际问题。

提醒学生注意作业中的难点和易错点,加强复习和巩固。

六、教学评价

1、通过课堂互动和练习情况,评价学生对函数单调性概念的理解程度。

2、通过作业和测验成绩,评价学生对利用导数判断函数单调性方法的掌握情况。

3、通过学生的课堂表现和案例分析,评价学生的逻辑思维和问题解决能力。

高中数学教案模板范文单调性 篇2

【教材分析】

《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力及分析问题和解决问题的能力。

【学生分析】

从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么,从各种函数关系中研究它们的共同属性,应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

【 教学目标】

1.使学生从形与数两方面理解函数单调性的概念。

2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力。

3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。

【教学重点】函数单调性的概念。

【教学难点】从形与数两方面理解函数单调性的概念。

【教学方法】教师启发讲授,学生探究学习。

【教学手段】计算机、投影仪。

【教学过程】教学基本流程

1、 视频导入------营造气氛激发兴趣

2、 直观的认识增(减)函数-----问题探究

3、 定量分析增(减)函数)-----归纳规律

4、 给出增(减)函数的定义------展示结果

5、 微课教学设计函数的单调性 定义重点强调 ------ 巩固深化

7、 课堂收获 ------提高升华

(一) 创设情景,揭示课题

1.钱江潮,自古称之为“天下奇观”。“八月十八潮,壮观天下”。当江潮从东面来时,似一条银线,“当潮来时,大声如雷”。潮起潮落,牵动了无数人的心。

如何用函数形式来表示,起和落?

2.教师和学生一起回忆

如何用学过的函数图象来描绘这潮起潮落呢?

设计意图:创设钱塘江潮潮起潮落,图象的问题情境,让学生用朴素的生活语言描述他们,对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

温故知新

(二)问题:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的`变化的趋势。

观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

创设情景,揭示课题

1. 借助图象,直观感知

同学们能用数学语言把上面函数图象上升或下降的特征描述出来吗?

画出下列函数的图象,观察其变化规律:(学生动手)

请作出函数f(x) = x+1并观察自变量变化时,函数值的变化规律。

(学生先自己观察,然后通过多媒体----几何画板形象观察)

2. 微课教学设计函数的单调性

1 在区间 ____________ 上,f(x)的值随着x的增大而________ .

2 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .

3、从上面的观察分析,能得出什么结论?

学生回答后教师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质——函数的单调性(引出课题)。

在区间I内

在区间I内

高中数学教案模板范文单调性 篇3

教学目标

知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。

能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。

德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。

教学重点:函数单调性的有关概念的理解

教学难点:利用函数单调性的概念判断或证明函数单调性

教具:多媒体课件、实物投影仪

教学过程:

一、创设情境,导入课题

[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:

问题1:气温随时间的增大如何变化?

问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?

[引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。

结论:

(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;

(2)左侧y随x的增大而减小;右侧y随x的增大而增大。

上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。

二、给出定义,剖析概念

①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值

②单调性与单调区间

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间。此时也说函数是这一区间上的单调函数。由此可知单调区间分为单调增区间和单调减区间。

注意:

(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。

(2)函数单调性是针对某一个区间而言的,是一个局部性质。

判断1:有些函数在整个定义域内是单调的`;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

判断2:定义在R上的函数f (x)满足f (2)>f(1),则函数f (x)在R上是增函数。

函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。

训练:画出下列函数图像,并写出单调区间:

三、范例讲解,运用概念

具有任意性

例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减

注意:

(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。

(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。

例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。

分析证明中体现函数单调性的定义。

利用定义证明函数单调性的步骤。

  • w
    高中数学教案详案范文模板

    发布时间:2024-10-09

    作为杰出的教师,需要精心设计教学计划,包括设定教学目标、确定教学重难点、选择合适的教学方法和步骤,并合理分配时间。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。高中数学教案详案范文模板 篇1  三维目标:  1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随...

  • w
    高中数学教案范文大全

    发布时间:2024-09-27

    作为一名优秀的教师,精心设计教学计划至关重要,包括教学目标、重点难点、教学方法、步骤和时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。高中数学教案范文大全 篇1  教学目标  (1)使学生正确理解组合的意义,正确区分排列、组合问题;  (2)使学生...

  • w
    高中数学教案

    发布时间:2023-11-21

    期望这篇“高中数学教案”能够完美地满足你的需求。教师在开学前需要准备好教案和课件,每个人都要规划自己的教案和课件。教案是实现教育现代化的必要工具。如果你能从本文中得到一些收获,我会倍感欣慰!...

  • w
    高中数学教案优秀教案范文

    发布时间:2024-10-06

    作为一位无私奉献的老师,不可避免地需要准备教案。教案是教学的蓝图,能够有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用7篇),希望能够帮助到大家。高中数学教案优秀教案范文 篇1  一、教学目标  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。  2、给一个...

  • w
    高中数学教案优秀教案

    发布时间:2024-10-10

    作为一名无私奉献的老师,不能避免地要准备教案,它是教学蓝图,可以提高教学效率。教案要怎么写呢?以下是小编帮大家整理的高中数学优秀教案(通用10篇),希望能够帮助到大家。高中数学教案优秀教案 篇1  一、教学目标  知识与技能:  理解任意角的概念(包括正角、负角、零角)与区间角的概念。  过程与方法...

  • w
    高中数学教案设计模板

    发布时间:2024-09-27

    作为优秀教职工,需设计精心教学计划,包括目标、重难点、方法、步骤与时间分配等。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。高中数学教案设计模板 篇1  一、单元教学内容  (1)算法的基本概念  (2)算法的基本结构:顺序、条件、循环结构  (3)算法的基本语...

  • w
    高中数学教案12篇

    发布时间:2024-02-28

    上課前準備好課堂用到的教案和課件是非常重要的。每位老師都應該撰寫教案和製作課件。教案是促進學校內部教育教學協調和互動的重要手段。什麼樣的教學課件才算是好的呢?如果感到困惑,可以參考一下“高中数学教案”,或許能夠給你一些啟示。希望我的回答可以幫助你解決問題,請把它收藏起來,以便日後查看!...

  • w
    高中数学教案16篇

    发布时间:2024-04-13

    作为一名刚刚上岗的教师,我们的工作之一是教学。通过反思教学过程,我们可以快速提高教学能力。那么,在写教学反思时,有哪些问题需要注意呢?下面是我整理的高中数学教学反思,希望对大家有所帮助。高中数学教案 篇1  【教学目标】  1.知识与技能  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差...

复制全文
下载文档